
.DTOC FILE Copy PG

AD"A222 706 Form Approved
ATO N EOM No 0704.0188

I&. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
- UNCLASSIFIED NONE

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
2b.________________DOWNGRADINSCHEDULEAPPROVED FOR PUBLIC RELEASE;
2b, DECLASSIFICATIONIDOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/CI/CIA- 90-013D

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION
AFIT STUDENT AT (if applicable) AFIT/CIA
North Carolina State Univ J.

6r. ADDRESS (City* State, and ZIP CodeI 7b. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB OH 45433-6583

bS. NAME OF FUNDINGISPONSOP.ING &b. OFFICE SYMBOL 9. PROCUREMENT INWTRUMENT IDENTICATI•T•N NUMBER
ORGANIZATION ap pileble)

&ADDRESS (City. State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
- PROGRAM PRDIJECT TASK WORK UNIT

ELEMENT NO, NO. NO. ACCESSION NO,

111. TITLE UncIucko Stcurity Cl-knifictioi1 (UI!0CLAS DT& .. L

Conjugate Gradient Methods for Constrained least Squares Problems

12. P RSONAL AUTHOR(5)
Douglas James

13.. TYPE Of REPORT 13b. TIME t6VjRtD 14, DATE Of REPORT (Vqar, mioth.Day.) IS PAGE COUNT
I W FROM - ._ To. 1990 135

16 SUPPIJMENTARY NOTATION ....... " --REL-ASE _UAWFR 190-7
ERNEST A. HAYC¥OOD, ist Lt, USAF
Executive Officer, Civilian Institution Programs-

17. COATI CDES 8. SUsJECT TiRmS (Contkw# on revera Hf necesury 4nd Idmntify by block wnuber)

19. 4 F $STRPAC (C-1cotinu re~a it wces;i andidelvy by block Awnif.')

DTIC A
EECTE

. b.

.90 06 1.) 074
bO I IUrJTIONAVA*LAJIILTY OF ASSYAO 21. A110RACT StCURIT'? CLASSIFICATION

MUAWINIECIAINUMiV- t0 SAME ,.S RPT. D'•C u$•1S UNCLASSIFTED
t- A1I7ORESPONSp.lINDIVIUtMA 22b. TELEPH~ONE (Intlude Area C060) 22c. Of FICE SYMBOL

EINESTA. HAYGOOD, 1st Lt, USAP (513) 255-2259 AFIT/Cl
f formn 1413, JUN 86 P .edioru ateobsolete. =U;TY C, TINO Hi!AGL .

edi"o ar m m



Conjugate Gradient Methods
for Constrained Least Squares Problems

by

Douglas James

A thesis 3ubmitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Department of Mathematics

rteigh
1990

Approved by:

Ny 7 Robert EyWhite

SSte]hen J.Nrig• Itobert J. Plemmons
Chairman, Advisory Committee



Abstract

JAMES, DOUGLAS. Conjugate Gradient Methods for Constrained Least

uares Problems (directed by Robert J. Plemmons). Nreiw• 1\ .

'iu 1988, Barlow, Nichols, and Plemmons proposed order-reducing con-

iu&&te gradient algorithm for solving constrained least s uares problems. They

pr. ved that this method, which we call Algorit BNP is superior to p-cyclic

SORIIIn exact arithmeti, rL

")Here we continue the study of Algorithm BNP. We identify and correct a

source of instability in the original algorithm, and develop a parallel version

suitable for substructured problems. We prove that BNP is superior to block

accelerated overrelaxation (AOR), and establish a connection between BNP and

a preconditioned form of the weighting method. We also show that BNP can

be viewed as a nullspace method, in which a distinguished choice of the basis

for the nullspace is used but never formed. Finally, we exploit this nullspace

characterization to extend BNP, producing a class of algorithms we call implicit

nullspace methods. These methods allow great flexibility in the choice of pre-

conditioner, and can be used to solve problems for which BNP is not well suited.

Like BNP, the extensions are suitable for parallel implementation on substruc-

tured problems. Experiments on structural engineering and Stokes Flow models

suggest that BNP and its extensions offer a competitive alternative to existing i or

iterative algorithms for solving constrained least squares problems.

The appendix describes a mechanism which can cause the breakdown of ed

incom plete Q R factorizations. 
-St\~ o c s; . Q,(O,, AI on- -

Ai•o K > Distributlon/

\~~A\ ~\~ V~ '\6 CISPO Availability Codes
6•, .oll •3/or

CA k~il ()II is seea



"I don't know enough," replied the Scarecrow cheerfully. "My head

is stufed with straw, you know, and that is why I am going to Oz to

ask him for some brains."

"Oh, I see," said the Tin Woodman. "But, after all, brains are not

the best things in the world."

"Have you any?" inquired the Scarecrow.

"No, my head is quite empty," answered the Woodman; "but once I

had brains, and a heart also; so, having tried them both, I should much

rather have a heart."

L. Frank Baum
The Wizard of O:

To my brother David.

I remain convinced that
we are the ones who are handicapped.

ii



Acknowledgements

My graduate studies were sponsored by the Department of Mathematical Sci-

ences, US Air Force Academy, CO, and funded by the Air Force Institute of

Technology, Wright-Patterson Air Force Base, OH. My resach was directed

by Robert J. Plemmons under Air Force Office of Scientific Research grant

no. AFOSR-88-0285. The Office of Scientific Research, under DURIP grant

no. AFOSR-89-0124, also funded the Alliant FX/40 multiprocessor used for all

numerical experiments. I have waited a long time for the opportunity to pursue

this degree, and am grateful to these agencies for giving me the chance to do

50.

My experience t North CarolnSa State has been a rich and rewarding one; I

am indebted to the faculty and staff, especially the members of my committee,

for making it so. I especially appreciate all that Professor and Mrs. Plemmons

have done to help my family feel welcome. We feel at home here, and we leave

Raleigh very reluctantly.

Three friends and mathematicians deserve special thanks. To Professor Jesse

Barlow, The Pennsylvania State University: he was probably the first to sense

the posibility of a generalization to the original order-reducing conjugate gra.

dient algorithm, and his comments and criticisms on all aspects of this research

helped us ask the proper questions. Had our schedules allowed us to work

Ui'



together closely on this problem, this thesis would have been richer. To Pro.

fessor Gil Strang, Massachusetts Institute of Technology: his book on applied

mathematics got me excited about equilibrium equations, while his advice and

encouragement helped to keep me going. And to Jim Northrup, formerly my

office mate at NC State, and now a professor at Worcester Polytechnic Insti-

tute: in the fall of 1987, following my ten year absence from school, he made it

possible for me to "hit the ground running" by patiently reacquainting me with

the world of computing.

I cannot conclude my acknowledgements without mentioning my family. I

thank my parents for gifts and sacrifices beyond words. And to my wife, Pam,

and daughter, Bethany, I can only say this: your patience, support, and under-

standing these last three years has exceeded anything I had a right to expect.

LTdies, I have some making up to d&

iv



Contents

List of Tables vii

List of Figures viii

List of Symbols and Abbreviations ix

1 Introduction 1

2 Formulation of the Problem 5
2.1 Problem LSE and Equivalent Forms............... 5
2.2 First Example: Static Analysis of Engineering Structures ... 8
2.3 Second Example: Stokes Flow...................... 15
2.4 Substructured Problems ...................... 26

3 Description of the Algorithms 32
3.1 Modified Kuhn-Tuder Equations 33
3.2 Algorithml BlIP . .............................. 38
3.3 Other tezative Algorithms . . ... . .... 46

4 Comparison of the Algorithms 52
4.1 BNP vs AO Ordlnaz Least Squares .... ....... 53
4.2 BNP vs AOR. Conatrained Least Squam .. ... . .... . 62
4.3 BNP and Preconditioned Weighting ....... .......... 68

5 Implicit Nullspace Methods 72
5.1 BNP as an Implicit Nullspace Method ........... ... 74
5.2Algofitbm INM: General Qwe ......... ................... 78
5.3 Exaples of Implicit Nullupawe Methods ........ 82

6 Numerical Experiments 89
6.1 Overview of Experiments ............... ....... 90
6.2 Small Full-RAwk Structures Problems................. 93
6.3 Larger Full-Rank Structures Problems ............... 97
6.4 Rank-Deficient Structures Problems........ ........ 101
6.5 Stoke. Flow ........... 105

7 Conclusions 109

v



8 References 111

9 Appendix: The Breakdown of Incomplete QR Factorizations 114
9.1 Preconditioning with Incomplete Factorizations ......... 114
9.2 A Strategy for lncompleteQR................... 116
9.3 Examplesof ncompleteQR Breakdown .... ......... 119

vi



List of Tables

3.1 Algorithm BNP (Problem LSE) .................. 45
3.2 Thee-Block AOR (Problem LSE) .................. 49

4.1 Algorithm BNP (Unconstrained Least Squares) ......... 56
4.2 Three-Block AOR (Unconstrained Least Squares) ........ 57

5.1 Implicit Nullspace Method (General Case) ............. 81

6.1 Numerical Result: Small Full-Rank Structures Problems . .. 96
6.2 Numerical Result: Large Full-Rank Structures Problems ... 100
6.3 Numerical Results: Rak Deficient Structures Problems .... 104
6.4 Numerical Results: Stokes Flow on Unit Square ......... 107

vii



List of Figures

2.1 Pin.jointed Rigid Bar Truss ..................... 9
2.2 Equilibrium Constraint By = & for Pin-jointed Truss. .. .. ... 10
2.3 Typical Planar and Solid Elements ...... . . ........ 12
2.4 Matrices for Static Structures Problem . . . . . . . . 14
2.5 Marker-and-Cell Discretization of Unit Square (n.=3) ..... . 17
2.6 MAC Stencil: Divergence Operator .............. 18
2.7 Matrix A for MAC Grid (n.=3) ............ 19
2.8 MAC Stencil: Horizontal Momentum. .. .. .. .. .. .. . .20
2.9 MAC Boundary Corrections: Horizontal Momentkm t I ..... 21
2.10 Blocks of G for the Stokes Problem .............. 25
2.11 Substructuring a Finite Element Model ........... . 27
2.12 Narrow Subtructurmng of MAC Grid ............... 28
2.13 MAC Stencll (Horizontal Momentum) at a Transition Line .. 30
2.14 Wide Substructurin of MAC Grid .... ......... 30

3.1 a& Afromtrapoidu ....... . ..... . . ..... .34
3.2 FrinAt from staistepB. . .. .. .. .. .. .. .. .. . .36
3.3 Foraing Sta•ntep E. from Subtrutured B........... 37
3.4 Ato A from Subtructumd z, . ...... 38
&I Interladus in A orithm INMG I ................ 85

6.1 Models for Small Ful-Rank Problems ........... 94
6.2 Models for Lrge ll-Rank Problems .............. 98
6.3 Models for R e Icimt Problems ............... 102

viii



List of Symbols and Abbreviations

1. Symbols. When appropriate, the equation number of the first reference
to a symbol appears in parentheses. We do not include the following types of
symbols in the table: (1) symbols representing iterative approximations (for
example, we presume it is clear from the context that y(*) is an approximation
of y at the kth iterate); (2) "tilde versions of primary symbols (in the body of
the text, a tilde (") over a symbol indicates that the symbol is associated with
an unconstrained least squares problem); and (3) symbols used a single time
during minor manipulations.

At Pmemditioca, tfomed Down tows D0 D6iagol block for 2-SOR and
of B and G (3-2) 2-AOR (13O)

A3 Alterate sostie fot 0, (3.3) 0, Diag tal block for 3-SOR and
B& INM Prewadilow 6oemd (mm 3-AOR (3.36)

E and Ut usit& ewladacn Of itti diagonal block of Ff (2.28)
IChm (5.16) Drv Ah diagona bock of Fv (2.26)

i% INM PeromdI t tmed fx rSe ,querium matrix (1.1)
8 sad MU without using L& bock of A (3.6)

(i$1?d " cmuigi st Right block of Et (3.8)
P Ls. (11) So Suirstep fatrt of 9 (3.10)

to 4 SUCOMW wit etwo. A Ttapesdal form of E (3.8)
cauqpoeint (2.17) So Eqlab~tum matrix wspaig ted

61 6 augmented with q~ ($.4) with dqaakt~dU ow (2.17)
I V4Imatedwith c in C Youg's Modulus (2.12)

weighting method (3.U) F The matrix GT0 (2.7)
C W:Wj'I in Pwgt (3.47) Ps In Stoke problem, block of F

C amsciated with honizoctlld C•at •.tew in dded to be "oae ihhrzca

'wse (1.0) velites (2.2$)
I, ; block of (3.4) v Stoke problem, block of P

moiate with vertical
93 Low block of c (34) Vloities (2.25)
D block diago•a• matrix for SOR ! NUW f uthuside in

"sd AOR atting (3.35) Uwrs y (3.35)



L Righthand side in conservation Pit Right block of P (3.9)

of momentum equation (2.13) p praeure (2.13)
FIirt compoitent of L (2.18) P(y) quadratic form in constrained

f2 Second component of L (2.19) minim*ation formulation (2.4)
G Coefficient matrix in problem qj Direction vector for correcting y

LSE (2.21) in BNP (3.28)
G0 In Stokes problem, block of G r IRmidual r = c- OG (2.6)

associated with horizontal ?I Upper block of r, unknown in
velocities (2.30) BNP (3.4)

G0 Blockh in upper.triangulur G; 3 Lower block of r (3.4)

on dard numbering (3.7) &, kth Krylov subspece (4.14)

01 Upper block of G (3.1) a Th V -G (1.1)
02 Lowe block of G (3.1) BNP directica vector (3.27)
Gv In Stokes problem, block of G Thkkn o d. eent (2.2)

twith vertical t Thicknes oelement (2.12)

velocitie (2.30) U Block upper triangular matrix
o Righthand Pide in (2.erv3t0 for both the SOR and AOR

of man equation (2.14) spltting (351)
IC functIon 0 evaluaw at cednte of i Flow velocity vector (2.13)

tenclil (2.15) N• ith comepont ofi1 (2.18)
A Righthand ede of BNP oa INM W rE aum ted with G in

system (3.21) .weihting method (3.38)

#. Stoka mah lenth (2.15) W, upper block of W (3.43)

I Idetity mwi W3 Iowe blmk of W (3.44)

K Block di onuaix with0 W ua now to rious
and I matrice as the two pni tUon• d syttems (3.47)
diagona b"ok (3.4) wt Upper block of wn (4433)

R lgttmd tblockofK (3.16) wit wer Mockofw (4.33)
L Block lowa trianglar matrix for 8 As vecto", the unknowa in

SOft sad AOR avUttia (3.35) 11M (442); as a alar, horitontal
Mt Atpmetakou matix used to toordinaw direction (2.18)

form at (5.17) y ITe matix A2A•j'k (3.20)
MI Numbe of tows in E (1.1) V Uaknown ia poblem SE (1.1)
w3s Iumbee of rows in G (1.1) Up V*Iodq on a actitiou boundary

M Basis mat&i for the nullap&c of edge (2.22)
8 (4AS)),(5.2) IC Goaapomet ofVin Center of

MI FiUdaestal basis matrii for iteucil (2.15)
.,Akpaft of E (5.4) an Compoeat of y &IWS ew edge

m Number of unwknown in pmbkm of stucil (2.15)
LSE (1.1) I& Upper block ofV (5.12)

1. to Stokes problem, uumbeta of c Co t of I aloags ch
o•s am each side oft t squate edge of Atatil (2.15)

P Permtation mattix (3.9) , Pticu*UW solution to contraint

P& Left block of P (3.9) p=$(4.17)

X



PR Lower block of y (5.12) p Lagrange multiplier in saddle
VS Component of y along south point formulation (2.8)

edge of stencil (2.15) AB Component of 1 along east edge
yw Component of y along west edge of stencil (2.20)

of stencil (2.15) pw Component of ; along west edge

z As a vector, unknown in of stencil (2.20)
arbitrary linear syetem (3.35); as v Poisson's Ratio (2.12)
a scalar, vertical coordinate Y BNP defect (3.29)
direction (2.10) r weighting parameter in

Z3 A augmented with rt (3.4) weighting method (3.38)
SAOR acceleration parameter W Relaxation parameter in SOR

(3.37) and AOR (3.35)
7k BNP scale factor (3.27) V Gradient operator (2.13)
A Lagrange multiplier in V. Divergence operator (2.14)

Kuhn-Tucker formulation (2.6) V2 Laplacian operator (2.13)

2. Abbreviations. The description of each abbreviation includes a reference
to the section in which the item is first discussed in detail.

AOR Accelerated Over-relaxation (13.3)
BNP Order-reducing conjugate gradient algorithm due to Barlow, Nichols,

and Plemmons (13.2)

INM Implicit Nulbpace Method (15.2)
INMF Implicit Nullspace Method with preconditioner based on F (15.3)

INMG Implicit Nulispace Method using rows of G (35.3)
INMGI Implicit Nullapace Method using rows of G and I (15.3)

INMI Implicit Nullspace Method using rows of 1 (15.3)

IQR Incomplete QR (19.1)

LSE Equality constrained least squarcw problem (32.1)

PWgt Preonditioned Weighting Algorithm (33.3)
SOR Successive Over-relaxation (13.3)
WLS Weighted Least Squares (13.3)
2-AOR Two-block Accelerated Over-relaxation (33.3)

2-SOR 2-cyclic Successve Over.relaxation (13.3)
3-AOR Three-block Accelerated Over-relaxation (13.3)
3-SOR 3-cyclic Succeseive Over-relaxation (13.3)



1. Introduction

In this thesis, we cuasider the solution of tho equality constrained least

squares problem, or problrem LSE: given an mlxn matrix E, an m2xn

matrix G, an mxl 1 vector b, and &z m7x I vector c,

Sinmize iIGy - c112 ,.ach that Ey = b. (1,1)

We place c ditioms on the prlblewi guaranteeing a unique solution, and

presume that toe matrices are large and sparse, so that it is plausible to consider

iterative algorithm. All assumptions are realistic for a wide range of important

applications.

We will also need a number of equivalent formulations of the problem. The

so-called Kuhn-Tucker formulation is the starting point for each of the al-

gorithms we discuss, while the constrained minimization and saddle point

forms is the natural setting for many physical applications.

The motivating example for our work is the static analysis of engineering

structures: given a large structure subjected to an external load, find the in.

ternal forces at equilibrium. When the problem is modelled using the force

method (see, for example, [171), the constraint ly = b captures the fact that

the forces sum to zero at any node in the structure (the equilibrium condi-

tion). We then look for the unique set of internal forces which minimizes a

type of potential energy subject to this constraint. This application is but one



example of a more general physical principle at work: minimizing an energy

functional subject to an equilibrium constraint is a central idea throughout the

physical sciences (see Strang (34], (35]), so problem LSE in its various equiv-

alent forms has a wide range of applications. We use as a second example a

discretization of a Stokes Flow problem leading to a saddle point system.

Our study of problem LSE and its equivalent forms centers around an al-

gorithm first proposed and analyzed by Barlow, Nichcu. and Plemmons [4].

The derivation of this algorithm, which we call Algorithm BNP, starts with

Srepartitioned form of the Kuhn-Tucker equations which has square, non-

singular, and easily invertible diagonal blocks. The authors rewrite this system

by applying block Gau elimination, producing a symmetric positive definite

sub-problem with the n-ml leading components of the residual r = c -- Gy as

the unknowns. They then apply a variation of the conjugate gradient algorithm

to this sub-problem, generating at each iteration an approximation to the orig-

inal unknown V. The method is order- or dimension-reducing in the sense

that the tub-problem has fewer unknowns than the original problem in V.

Barlow, Nichob, and Plemmons prove in (41 that Algorithm BNP is superior

to •s•caled p.cyclic SOR methods in a certain well-defined sense. We extend

this result, proving the algorithm is also superior to a two-parameter general-

ization of SOR known as Block Accelerated Overrelaxation or AOR. We

also establish a connection between BNP and a preconditioned version of the

classical weighting method. In addition, we identify and correct a source of

inaccuracy in the original version of algorithm BNP.

Our main purpose, however, is to extend the ilgorithm to two types of

problems for which Algorithm BNP is not well suited. In theory, BNP requires

2



fairly mild assumptions on problem LSE. In practice, however, implementation

is difficult unless the matrix G has full column rank. This assumption holds for

many but not all applications (it falls to hold, for example, if any of the elements

in the structures problem fails to behave elastically). The algorithm may also

be di4cult to apply to problems expressed in saddle point form (e.g. Stokes

flow). We propose an extension to BNP which can overcome these limitations.

The key to the extension is recognzng a connection between algorithm BNP

and the classical nullspace method. The latter begins with some convenient

particular solution y, to the constraint, and a matrix N whose columns form

a basis for tLe n,'Ispace of E. One then seeks a coordinate vector z such that

y - ,,p4 Xz is the solution to the constrained problem. We show that BNP may

be viewed as a vz..riation of the nullspace method, in which distinguished choices

of yP and N are used bit never formed (we will call such a method an implicit

aullspace method, or WM). The baxis matrix N is seen to be acting as a

preconditioner for a aet of nrnmal equatinru in factU red form. We generalize

algorithm BNP by producing implicit aullspace methods for other choices of

N. The exteamion preserves the spirit of M"N" (in particular, the algorithms are

order-reducing), but is somewhat more flexible: it becomes relatively eawy to

construct preconditioners for problems in whih G lacks fall column ramk, as

well as problems in saddle point form. Bo* " BNP and the mome general implicit

nulkpace algorithms can be implemented &n paralel when the matrices reflect

a substructuriug (domain decompositi, m) of the physical model.

Chapter 2 pro,'ides an overview of the properti-, of problem LSE and its

equivalent forms. We also show how both ,he structures and Stokei Flow prob-

lem can be expressed in terms of these forms, and diwas the special structure

3



of the underlying matrices for substructured problems. Chapter 3 provides an

overview of each of the four basic iterative algorithms we discuss: p-cyclic SOR,

block AOR, a preconditioned form of the weighting method, and of course Algo-

rithm BNP itself. We include a detailed look at the construction of the modified

Kuhn-Tucker equations needed to implement all of these algorithms. In chap-

ter 4 we compare and contrast the methods: we summarize the results in [4]

concerning BNP and p-cyclic SOI we extend these results to show that BNP

is superior to block AOR; and we show that BNP can be viewed as the limiting

case of the preconditioned weighting method.

The extension of BNP is the topic of chapter 5: we establish the relation-

ship between BNP and the nullspace method, then exploit this connection to

derive the more general implicit nullspace methods. We then provide a menu

of possible INM algorithms. In chapter 6 we summarize the results of our nu-

merical experiments. We include tests on a variety of structural engineering

problems, including problems which violate the assumptions of elasticity. We

also describe the performance of various forms of INM on a Stokes Flow prob-

lem. In each :ase, we include results of experiments involving parallel versions

of the algorithms.

We offer some concluding remarks in chapter 7. Finally, in the appendix,

we describe a mechanism which can cause the breakdown of certain types of

incomplete QR factorizations proposed in the literature.

4



2. Formulation of the Problem

This chapter is an overview of the equality constrained least squares problem.

In §1.1 we mention some of the basic properties of problem LSE, state the

assumptions under which we proceed, and express the problem in four equivalent

forms. The material in §1.1 is largely a distillation of more complete discussions

in Bjorck (7], Golub and van Loan (12], and Strang [35]. The next two sections

include descriptions of two physical applications: the static analysis of structures

(§1.2) and a finite difference discretization of a Stokes Flow problem (§1.3). In

§1.4, we use these two examples to explain the effect of substructuring (domain

decomposition) on the structure of the underlying matrices.

2.1 Problem LSE and Equivalent Forms

Recall from the introduction the statement of problem LSE: given an mix n

matrix E, an m2xn matrix G, an mixl vector b, and an m2xl vector c,

minimize fIGy - c112 such that EB = b. (2.1)

We make two plausible assumptions before proceeding:

HI: E has full row rank, so b is in the range of E and the problem has at

least one solution; and

5



H2: the nulispaces of E and G intersect trivially (or, equivalently, [G has

full column rank), guaranteeing that the solution is unique.

Two types of manipulations will prove especially useful. Given any non-

singular matrix B, we can replace the constraint Ey = b in problem LSE with

the new constraint BEy = Bb. This means we can apply Gauss elimination or

orthogonal reduction to E and b without affecting the solution y; we can use

this fact to reduce E to some convenient "canonical" form. Similarly, let Q be

an orthogonal matrix. Then, since premultiplication by Q preserves the 2-norm,

we can replace the quantity (Gy - c) in LSE with (QGy - Qc). Thus we can

apply orthogonal rotations (but not Gauss elimination) to the rows of G and

c without affecting the solution. Additionally, we can scale (Gy - c) by any

constant multiple of the identity matrix.

We will also make frequent use of the three equivalent formulations of LSE

described below.

Constrained Minimization Problem. Note that

IGy - cIli = yTGTGu - 2yTGTc + cT, (2.2)

and that the term crc has no effect on the value of y at which the quantity is

minimized. With this in mind, define

p(y) = yTGTGy - 2yTGc, (2.3)

noting that y satisfies problem LSE if and only if y is the solution of the con.

strained minimization problem:

minimi~e /(y) such that Ey = b. (2.4)

6



Kuhn-Tucker Formulation. Let r = c - Gy represent the residual vector we

seek to minimize. Introduce the m x 1 Lagrange multiplier A (one component

for each constraint), and define the functional

0(y, A) = P(y) + AT(Ey - p). (2.5)

Here *P is as in equation (2.3). Under assumptions Hi and H2, the solution

y to problem LSE is part of the ordered pair (y, A) defining the unique saddle

point of this functional. One can find this saddle point by solving the so-called

Kuhn-Tucker equations:

I 0 0 . (2.6)

The first block equation in this system, which is just the constraint Ey = b,

results from differentiating 0 with respect to each component of A, and setting

the result equal to zero. The second equation simply defines the residual r. The

third equation comes from differentiating 0 with respect to each component of

y. The Kuhn-Tucker formulation is the starting point for most of the algorithms

of concern to us.

Saddle Point Formulation. Let F = GTG and a = --GTc. Note that the

functional P defined in equation (2.3) can then be rewritten as

P(y) = yTFy + 2yTs. (2.7)

Introduce the Lagrange multiplier p, and define the functional

0(y, A) = *P(y) - #,T(Ey - p). (2.8)

7



Once again the solution to LSE is associated with the saddle point of this

functional; thus one can find the solution to problem LSE by solving the linear

system which defines this saddle point:

We chose the signs in the definitions of/i, s and 0 so the matrix E is the same

in all four formulations. The multiplierju is related to A in the Kuhn-Tucker

equations by p - -A.

2.2 First Example: Static Analysis of Engi-
neering Structures

The motivating example for our work is the static analysis of engineering struc-

tures: given a physical structure subject to an external load, find the internal

forces at equilibrium. In this section, we use a simple example to show how

to model this problem as a constrained least squares problem. We employ the

so-called force method (see, for example, Heath, Plemmons, and Ward (17],

Przemienieckl (32], or virtually any text on structural analysis). Much of the

material below is a summary of the discussion in section 2.4 of Strang [35].

Consider the truss depicted in figure 2.1. The elements in the structure

are rigid bars. We assume the bars cannot bend; longitudinally, they behave

as if they were very stiff springs, reacting to external loads by compressing or

elongating. Thus, asociated with each element i there is a single unknown y,

representing the internal force in that element when the structure as a whole

is at equilibrium. We establish the convention that a positive yj represents an

element in tension.

8



appk

Figure 2.1: Pin.jointed Rigid Bar Truss

The elements are connected to each other by pins; the locations of thee

pins are called nodes. We assume the problem is modelled so that external

force. act only at the nodes; in this example, there is a single unit force acting

downward on node 5. The nodes at the southwest and southeast corners of

the truss are supported or *grounded" in the sense that pin joints bolt them

to an Immobile baee (this means we are not free to specify an external loading

at these nodes; the force on a fixed node is that necessary to prevent the node

from moving). The other five nodes are free to move in the ,-z plane as the

elements lengthen or contract under the load. We assume, however, that the

displacements at these free nodes are very smalL We also presume that the

structure is stable: there are enough properly placed elements to prevent the

structure from collapsing on itsel, and it in supported in such a way that there

is no set of external loads which causes a rigid motion.

If the structure is at equilibrium, then the forces acting at each node must

sum to zero (the equilibrium condition). In the example, we therefore begin

by writing a force balance in both the z and z coordkite directions for each of

9



-1 v1 -V22 0
,4 1 12 0

6-2 -•r2 Y 0vr2 VI o

42 V2- 01
,r -vr 0 1•

v62 -v 62 -0•.
Ia

vr2 -,/ r20 J1fO

Figure 2.2: Equilibrium Constraint By = 6 for Pin-jointed Truns

the five free nodes. At node 5, for instance, the equilibrium condition gives us

the two equations

+V% V + - "0 (S direction)
IOk A (S direction). (.0

We now write the collection of all ten equatiors in matrix form: each of the five

free nodes contributes a block of two tows (one for each direction in which the

node is free to move'. The result is the constraint By = b in problem LSE. The

full system for the trus in figure 2.1 appears in figure 2.2.

The vector b stores the specified external force vector. The matrix E, com-

monly called the equilibrium matrix, holds the non-zero coefficients in the

fotce balance equations. It captures the shape and connectivity of the structure;

its entries are independent of material propertlies. The matrix E has one other

important property: if the dructure is stable, then the equilibrium matrix has

full row rank (see Strang [351). Thus the equilibrium constraint for stable

10



structure satisfies hypothesis HI. Because each node is attached to only a small

number of elements, E is extremely sparse when the structure is large.

More generally, a finite element model of a structure may be composed of

elements which allow more freedom and complexity than rigid elastic bars (see,

for example, Przemieniecki (32]). Figure 2.3 depicts some typical examples:

a pair of two-dimensional planar elements (in this case, a right triangle and

a square), and a solid tetrahedral element. In these examples we assume the

only independent internal forces are those shown in the sketches, and we take

the corns of the elements to be the nodes. Other more complex models are

possible (eg. elements which account for the effects of beading, supports which

restrict nodes in some but not all directions, etc.), but we limit our examples

to the types of elements which appear in our test problems.

In any cas, regardless of the types of elements in the structure, one still con.

structs the equilibrium constraint Ey = b by writing force balance equations

at each free noode. Now, however, each element generates a ock of columns

in the equilibrium matrix E (one colunn for each *wdepeinentt internal force).

Thus, for example, the equilibrium matrix for two inenuional structure mod.

elld with planar tdangula elements will have three columns per element, and

two rows per free node. The maix• E will be spase, and will have full row

rank when the structure i stable. Unlike the matrix in figure 2.2, however, the

equilibrium matrix will often have far more column than rows (see the test

p blems in chapter 6, where m, ranges from roughly I to I the size of na.).

Of course, the equilibrium condition does not tell the whole story. Math-

ematically, there will generally be &a infinite number of vectots y satisfying

the costraint By =b. Physically, we have not yet accounted for the material

11



F2  FF F3 F,

F2 • • F2

F3' F3  F4  F4

F, F2  F F5 F3
F2

F,

F4

F3  F3

F4  F#

fgure 2A TykA1 Plan and Solid Elmn

12



properties of the elements in the structure. A symmetric non-negative defi-

nite matrix F, called the element flexibility matrix, captures the material

properties. The solution we seek is the set of internal forces y which mini-

mize complementary energy subject to the equilibrium constraint (see, for

example, Strang (35]):

minimize YTFY such that Ey = b. (2,11)

Thus we can express the static structures problem as a constrained minimization

problem. Unless the elements are pre-stressed, the vectors c ands = -GTc given

in equatins (2.1) and (2.7) are zero in this application. The components of the

vector -A in the Kuhn-Tucker formulation represent the small displacements of

the nodes from their neutral (unloaded) position.

For a truss composed of riid elastic bars F i' a ia onal m, t. with

otive diagonal entries determined by Hooke', Law (the entry in iton (i, i)

ai F is the tociprocal of the 'Spring constant for element i; again, see Strang

[35)). G, of ous isa da mtrx with a entriesequal to the

square roots of the cortresonin entries in F. For more meneral elements, F is

A block diagonal matrix, with one smal block for each element in the structure.

The block associated with the fight Uiangular pnaw element in figure 2.3, for

czumle, Mi the 33 matrix

2A=-, 2 (2.12)

where the ýayuical cmstants 6, P, and t represent Young's Modulus, Poissoa%'

Ratio, and the thickness of the element respectively (see 1321). The matrix is

positive definite for 0 < v < I (the value P = 0.3 is typical). The blocks

13



element j/
F __- .

F= %.GEi 

,,,mo node

Figure 2.4: Matrices for Static Structurem Prcblem

associated with t'e planar square element and tetrahedral element (5x5 and

6x6 respectively) are defined by similar formulas. In all cases, the matrix F

is symmetric positive definite when all elements behave, elastically. Thus, the

Cholesky factor of F, which is block diagoual with upper triangular blocks,

can be used as the matrix G (figure 2.4). Moreover, since G is square and

non-singular for elastic problems, hypothesis H2 from the previous section is

satisfied trivially.

At a critical value of Y, howeveL, an element no longer behaves elastically,

and the block of F associated with tat element becomes singular. This critical

value (v = 1 for the planar elements, v = I for the tetrahedron) represents the

point at which an element no longer changes area (or volume) when subjected

to a load (see [32]). At the critical value, the block is stilA symmetric and non-

14



negative definite. Thus, when such blocks are present in F, we can still find

G such that F = GITG, but row the matrix G lacks full column rank. While

the linear theory described above no longer provides an adequate model of the

physics in this case, we will use these critical values to simulate "damaged"

elaments in the structure, g~ving us an opportunity to generate test problems

which are difficult to solve using algorithm BNP as originally derived.

We conclude this section by mentioning that the force method described

ebove is one of two approaches to solving the static structures problem. A sec-

ond formulation, the so-called displacement method, solves an unconstrained

least squares problem for the displacements, and then recovers the fc:ce vec-

tor y (see S&rang [35] for a careful discussion of the connectio. between the

two methods). For many reasons, the displacement method is by far the more

common approach used to solve structures problems. The force method formu-

lation described here, however, has some advantages. In particular, it explicitly

separates calculations involving the geometry of the structure (the constraint)

from those involving the material properties (the energy functional), and can

therefore be useful when analyzing a fixed structure while varying the material

properties (see, for example, Batt and Gellin (1]).

2.3 Second Example: Stokes Flow

The static analysis of engineering structures provides but one example of a more

general physical principle at work: minimizing %n energy functional subject to

an equilibrium constraint is a central idea throughout the physical sciences

(see Strang [34], (35]). A second example, leading naturally to a saddle point

problem, is the standard Stokes model for steady, very viscous flows. If we

15



consider only the constant density case, and scale out the Reynolds number,

the equations describing the flow are given by

V2 j- Vp - L (2.13)

V = g. (2.14)

The quantity u represents the continuous velocity vector, with one component

for each coordinate direction. The scalar p represents pressure. The first equa-

tion comes from conservation of momentum; the vector-valued forcing term L
reflects external forces such as gravity. The Laplacian operator V2 acts on each

component of y separately. The second equation reflects conservation of mass;

in the absence of sources or sinks, the righthand side g is zero.

We must also specify appropriate boundary conditions. We consider only

the Dirichlet boundary condition y. = go (the case y. = 0, which is physically

plausible for viscous flows at a solid boundary, is the so-called "no-slip" bound-

ary condition). Note that only the derivative (gradient) of pressure appears

in the differential equations. Thus, in the absence of boundary conditions on

pressure, we can determine presaure only up to a constant.

When we discretize the continuous problem, we expect to obtain the saddle

point form (2.9). The matrix E will approximate the divergence operator, and

the conservation of mass equation will become the constraint Ey = b. The

vector b will reflect boundary contributions as well as the forcing term g. The

components of the Lagrange multiplier IA will represent pressure. Since the

nejive of the gradient is the adjoint of the divergence, we will find that ET',

will •.•: ximate -Vp. The symmetric positive definite matrix F will come

from a discretization of the negative of the Laplacian operator V2, and s will

16



Lo
7 5 8 6physcal pressure ca

bondary node boundary

4 hodrontal velocity
Oil- spefed *I oenter of

arrow

2' 3
vertial velo*t

________________ ed at center of

Figure 2.5: Marker-and-Cell Discretization of Unit Square (n.=3)

reflect both boundary contributions and the forcing function L"

The test problems in chapter 6 are based on a marker-and-cell or MAC

finite difference discretization first studied by Harlow and Welch [16] (see also

Hall (15]). Here we consider the MAC method for the Dirichlet problem on the

unit square. Let z and z be the horizontal and vertical coordinate directions, and

begin by dividing the domain into cells as shown in figure 2.5. For simplicity

we consider a regular partitioning of the domain: let n, be the number of

cells in each coordinate direction, and h, = I/n, the horizontal and vertical

length of each cell. We specify the pressure # at nodes placed at the center of

each cell. Now connect the pressure nodes with directed line segments. The

components of the discrete velocity vector y are specified at the midpoints of

these directed line segments: horizontal components of velocity on horizontal

line segments (edges), and vertical components of velocity on vertical edges.

17



YN

Yw YE

Ys

Figure 2.6: MAC Stencil: Divergence Operator

Choose a convenient numbering of the nodes and edges. For now, we number

all the horizontal edges before the vertical ones, and we number both nodes and

edges frdm left to right, beginning at the bottom. Note that the boundary of

the grid does not reach the physical boundary; instead, it is offset by a distance

of h,/2.

We discretize the conservation of nma equation V *-- U by writing a flow

balance equation at each node in the grid, much as we did for the structures

problem in the previous section. Letting the subscripts N, S, E, W, and C rep-

resent the north, south, east, west, and center positions on a stencil (figure 2.6),

centered differences at each interior pressure node produces the equation

(ya - yw) + (N - ys) = h.go. (2.15)

At boundary nodes, one or more values of y are given by the boundary data,

and must be brought to the righthand side of the flow balance equation. For

example, at nodes on the interior of the the west wall of the grid, yw is known,

and the equation becomes

Y8 + YN - YS = h.SC + YW. (2.16)

18



1 1
-1 1 1

-1 1 _______

1 -1 1
-1 1 -1 1

___ -1 _ __-1

1 -1
-1 1 -1

-1 -1

Figure 2.7: Matrix Eo for MAC Grid (n.=3)

If we now write the collection of all such equations as a linear system, we

obtain a matrix equation of the form

Eoy = bo. (2.17)

The matrix E0 for the case n.=3 is shown in figure 2.7; the pattern for larger

n. is similar. But So is not quite the equilibrium matrix we seek. We will

produce the matrix E and the associated constraint Ey = b after a modification

described later in this section.

Before completing the construction of the constraint, we address the dis-

cretization of the conservation of momentum equation (2.13). Recognize first

that the equation is a vector equation with components in the two coordinate

directions:

VV-P = fi (z component) (2.18)

V V2 - P, = fA (z component). (2.19)

Here v, and v represent the z and z components of the continuous velocity

vector g; p. and p. are the derivatives of pressure with respect to x and z

19



"Ys
4 8

Figure 2.8: MAC Stencil: Horizontal Momentum

respectively; and f, and f2 are the components of the vector-valued forcing

term L"
We discretize the conservation of momentum equation by writing a diff~erence

equation at the center of each edge of the grid: on horizontal edges, we use the

horizontal equation (2.18), while on vertical edges we use (2.19). Consider, for

example, a typical horizontal edge with associated discrete velocity component

yo. Recallin that the Lagrange multiplier/is represents pressure at the nodes,

and using the subscripts N, S, E, W, and C as we did above, we work with

the stencil depicted in figure 2.8. Using centered difterencts, and multiplying-

through by h, (not h2.), we obtain the equation

- (4yo-y s-y;-y) js-#)=hf (2.20)

where f, is evaluated at the midpoint of the edge associated with yo¢. A sim-

ilar equation results from discretizing equation (2.20) at the center of interior

20



YW YC YE Yoý YE

(a) near east boundary (b) near north boundary

Figure 2.9: MAC Boundary Corrections: Horizontal Momentum

vertical edges.

Because the boundary of the grid and the physical boundary do not coincide,

the treatment of the edges near the boundary is a bit delicate. There are two

cases to consider. The first case involves an edge yc adjacent and perpendicular

to the boundary, stch as the edge near the east boundary shown in figure 2.9a.

This situation presents no special problems: a fictitious edge (ys in the example)

has a known value given by the boundary data. We simply substitute this known

value into equation (2.20) (or the equivalent equation in the vertical direction

if appropriate), and move it to the right-hand side. For the example we obtain

- -(4yc -y - s - yw) " (ps - #sW) = haft - 1YE. (2.21)

The second case involves an edge yo adjacent and prallel to the boundary,

such as the edge near the north boundary in figure 2.9b. Here the fictitious

edge (yN in the example) lies outside the physical boundary, so its value is not

specified by the boundary data. Instead, we know the value at a fictitious edge

yl lying on the boundary midway between yc and yN. We now interpolate to

21



obtain an approximate value for the fictitious edge: YB = 1(YN + yo), or

yN = 2yB - yc. (2.22)

Now substitute yN into equation (2.20) and rearrange to get what we need:

- (4yc - ys - ys - yw) - (MjE - #w) = h.f1 - +&IN. (2.23)

Of course edges near corners of the physical domain require both types of cor-

rections.

If we write the collection of all the edge equations as a linear system, we

obtain a matrix equation of the form

-Fy + E# -=s, (2.24)

where Eo is precisely the matrix defined in equation (2.17). The matrix F

contains two copies of the discretized Laplacian:

P =I[F1 F v (2125)

where FY and Fv are associated with the horizontal and vertical edges respec-

tively. More precisely, FH and Fv are the block tridiagonal matrices

Df• - 1 •".- DV -I
-I 1H- D V-=m .. Fv 2 ,(2.26)

-I ~-I -

where D' -- D, is the (n,- 1) x (n.- 1) symmetric tridiagonal matrix with 5's

on the main diagonal and l's on the sub- and superdiagonals, D -... -D._i

is the (n. - 1)x(n. - 1) symmetric tridiagonal matrix with 4's on the main

22



diagonal and l's on the sub- and superdiagonals, and Dr is the n.xn, matrix

5 -1
-1 4 -1

-1 4 -1
D....i.. (2.27)

-1 4 -1
-1 4 -1

-.1 5

for i = 1,... ., n, - 1. In all caes, I represents the appropriately sized identity

matrix. While it's helpful to appreciate the structure of the matrix F, in general

it need not be formed explicitly. We can compute a matrix-vector product of

the form Fw in terms of the stencils defining the action of F on an arbitrary

vector to.

At this point, our discretized system has the form

-F iEN J=AJ (2.28)So 0 , 0•

This is certainly a saddle point system, but the matrix Eo does not satisfy the

required hypotheses. Refer to figure 2.7, and note that EO lacks full row rank

(the sum of the rows of EA is the zero vector). This is no surprise: since we are

assuming Dirichlet boundary conditions, every edge enters one node and exits

another, so every column of E6 contains a single entry equal to -1, a single entry

equal to +1, and no other non-zero entries. Up to discretization error, the same

is true of the righthand side vector bo; this is a straightforward consequence of

Green's Theorem. We need to produce a constraint Ey = b such that E has full

row rank. We can do this in the obvious way, by deleting any convenient row of

Lo and the corresponding component of bo (more precisely, by annihilating the

row using Gaus elimination or orthogonal reduction). But we must examine

the effect of this change on the discrete conservation of momentum equation.

23



To do this, recall that the continuous problem determines pressure only up

to a constant. Thus if we specify the value of pressure at any single node, we

should expect to determine the pressure field uniquely. For convenience, set

the last component of p to zero. Let eT be the corresponding row of Eo, and

partition A and P into

B=[E and ;&=[4]- (2.29)

Since ET' = E14, replacing Ea with E (and & with A) is equivalent to "ground-

ine a single pressure node to zero. Thus we can safely replace BO with E

throughout the saddle point system (2.28). The matrix E has full row rank, so

hypothesis H1 holds. Morever, F is symmetric positive definite, so there exists

a G of full column rank such that F = GrG. Then, since G has no non.trivial

nullspace, hypothesis H2 holds vacuously.

There is still one important task remaining. We will need the matrix G to

construct one type of preconditioner for the Stokes problem (see chapter 5). The

Cholesky factor of F, however, is far too denae to be practical for this purpose.

Intead, we exploit the fact that the Laplacian operator is the divergence of the

gradient. We can therefore define Gr to be the appropriate discretization of

the divergence acting on the velocity edges of the grid. Since the adjoint of the

divergence is the negative of the gradient, we find that G saisfies F = GrO

as required. Using centered differences and techniques described in Strang [35],

we obtain G of the form

G= 1 [U Gi ] (2.30)

where -Gm and -Gr are discrete gradients acting on the horizontal and vertical

edges of the grid respectively. Figure 2.10 depicts the matrices for the cae n,=4;

24



4-

4-.

4.

-4 - 4

4..-

* 4.

-

4

- .- 

I. o* ' a 

4 . .

III
- -.. 

. . . . . 1

* "
4

£3 1 u • - l 
4 1 a

Figure 2.10: Blocks of G fo& the Stokes Problem



the pattern is the same for larger n, as well. It will prove helpful to observe

that the rows of G can be reordered so that the upper block of the matrix is

upper triangular and non-singular.

2.4 Substructured Problems

When working with discrete models such as those in §2.2 and §2.3, the order-

ing of the nodes and elements is an important issue. The choice of ordering

affects virtually every aspect of computational performance, including program

complexity, storage requiremants, and convergence of iterative schemes. Here

we discuss a standard way to order the nodes and elements to improve the

opportunities for parallel computation. The ordering technique, known as sub-

structuring or domain decomposition, involves grouping the components

of the model into contiguous pieces. The literature on the subject is vast; see

Ortega and Voigt [271 for an annotated introduction.

Consider, for example, the structure WRENCH depicted in 2.11 (this model

is oea of six sl test problem developed by M. Lawo (61). Partition the

model into a desired number of disjoint substructurts such that each node is

in exactly one substructure. There are now two types of elements in the model.

Most elements (the drk shaded elements in the figure) interact only with nodes

in a single substructure. Other elements called transition elements (the

lightly shaded elements in the figure), interact with nodes from mote than one

subttructur. Number the nodes and elements in the logical wa•. all nodes (and

elements) in substructure A, then B, etc. de the transition elements until

last, regardless of their physical location in the structure. For our purposes, it is

neither nece&y noa appropriate to use transition woc )n substracturing the

26



Figure 2.11: Subatructuring a Finite Element Model

model; see Plemmons and White (311 for a detcription of the matices resulting

from such a substructuring.

Because the interactions between the nodes and the elements determine the

non-zeos in the equilibrium matfix, we find that the partitioned model leads to

a matrix E with non.zeros confined to the blocks shown in the figure. Elements

in substructure A, for example, produce non-eos confined to the "diagou1"

block labelled A, while the transition elements produce the trantion block

labelled T in the figure. The matrices F and 0, which am block diagonal

with one 3mnal block for ea& elment, retain their struture eardls of the

ordering.

The diagonal blocks in the substructured equilibrium matix deserve further

comment. Note that each diagona block of R is itself an equilibrium matrix

for the associated portion of the model viewed a an independent structure. If

this phycal substructure is stable (see S2.2), then the diagonal block has full

tow rank otherwise, it is rank deficent. In the example, substructures C and

D are stable (they are fixed to the immovable base on the right side, and have

suflicient internal support), while substructures A and B ame not (they have no

27



Substructure A

N Substructure B
T-a siIon geeI'1I I IJI II

Figure 2.12: Narrow Substructuring of MAC Grid

external support). Thus the first two diagonal blocks in E lack full row rank.

Later, we address ways to exploit the substructured form of the matrix E.

For now, we er .phasize that the ideal situation is one in which the diagonal

blocks are all roughly the same size, the number of substructures is the same

as the number of available processors, and the transition block has relatively

itw columns. Problem WRENCH is far too small to justify the use of four

substructures in practicei we use it only to illustrate the concept.

The process of substructuring the MAC grid for the Stokes problem is Sim-

ilar to what we have just done, but is somewhat more delicate. Begin with

the grid derived in the previous section, and partition the pressure nodes into

substructures (v,-e the left portion of figure 2.12 for an example involving two

substructures; for clarity, we do not include arrows on the velocity edges). Let

the vertical edges connecting the substructures serve as the transition elements

as shown in the exploded view (right half of the figure). This leads to a sub-

structured equilibrium matrix analogous to that derived above, just as one would

"28



expect.

This substructuring of the MAC grid is useful for some purposes; we employ

it for one set of experiments in chapter 6. It is deficient in one important respect,

however: for this partitioning of the edges, the matrices F and G do not reflect

the substructuring. To see why, first observe that E is an node-edge matrix in

the sense that the rows of E correspond to nodes in the grid, while the columns

of E correspond to edges (see Strang [351). Thus, a substructured matrix E

results when edges in a given substructure interact only with nodes in that

substructure. The matrix F, on the other hand, is an edge-edge matrix: both

the rows and the columns of the matrix are associated with edges in the grid.

Thus, we obtain a substructured form for F when edges in a given substructure

interact only with other edges in that substructure. But the Laplacian stencil

defining the non-zeros due to the horizontal edges (§2.3) causes a problem.

Consider a stencil centered at a horizontal edge on the top boundary of the lower

substructure (figure 2.13; the edges involved in the stencil appear as thick lines

in the magnified view). Note that the stencil involves edges from both the upper

and lower substructures, violating the requirement that the two substructures

do not interact (the vertical stencil causes no problem in this example).

We can solve this difficulty with a simple change. We leave the partitioning

of the nodes unchanged, but include as transition edges those horizontal edges

which are adjacent to a transition zone. Thus, a given transition zone in the

physical grid consists of a row of vertical edges and two rows of horizontal

edges, as shown in the left portion of figure 2.14. With this choice of transition

edges, the symmetric matrix F has the structure shown in the right half of the

figure. There is a large diagonal block associated with each substructure; in

29



Figure 2.13: MAC Stencil (Horizontal Momentum) at a Transition Line

0
- IZIZI - IwI-I-Iw I w _

Figure 2.14: Wide Substructuring of MAC Grid

30



fact, each such block is the Laplacian acting on the substructure, and has the

form described in equations (2.25) and (2.26). Additionally, there are horizontal

and vertical strips associated with transition edges. The matrix G, which comes

from a gradient stencil that is a subset of the Laplacian stencil used for F (recall

§2.3), has a substructured form resembling the transpose of the equilibrium

matrix. We will make use of the substructured form of both F and G in one of

the algorithms we develop in chapter 5.

31



3. Description of the Algorithms

In this chapter, we introduce four iterative algorithms for solving problem

LSE: p-cyclic successive-overrelaxation (SOR), block accelerated overrelaxation

(AOR), a preconditioned form of the weighting method, and of course algorithm

BNP. We compare and contrast these algorithms in chapter 4.

Three of these algorithms (p-cyclic SOR, block AOR, and algorithm BNP)

iterate on a certain modified form of the Kuhn-Tucker equations; the fourth

(preconditioned weighting) is closely related to this modified form. We there-

fore begin by constructing the modified Kuhn-Tucker equations (§3.1), and

include a discussion of the computations necessary to achieve this form. We em-

phasize the parallel aspects of the computation, describing a technique called

interlacing proposed by James and Plemmons (20]. We outline each of the

four algorithms in the remaining sections. In §3.2 we detail algorithm BNP as

introduced in [4]. We mention a source of inaccuracy in the original version

of the algorithm (discussed in more detail in chapters 5 and 6), and propose

a simple correction. Section 3.3 is an introduction to the other three itera-

tive algorithms; we emphasize established results which will prove important in

subsequent chapters.

32



3.1 Modified Kuhn-Tucker Equations

It is difficult to apply traditional iterative methods to the Kuhn-Tucker equa-

tions as written in (2.6): the diagonal blocks are not even square, let alone

non-singular. We therefore start by repartitioning these equations. Since we

are assuming E has full row rank, and that [ E ] has full column rank, we can

reorder the rows of G and c, and repartition

G G, (3.1)

so that the matrix defined by

Al GI(3.2)

is square and non-singular. Defining A, = G2 for convenience, we now have

[ [(33)

Make these subatitutionas in (2.6) and reorder the column blocks to obtain the

modified Kuhn.Tucker equations:

A Z 0 K , (3.4)

whereof C ] r' ]j bi= z3- [ ,ad K-=[
C3r3 Ct rt 01

Note that the diagonal bloNo ate now square a nd noa-ngular.

We also observe that the ordinary (unconstrained) least squares problem

minimize tGy - cU3 (3.5)

may be viewed as a "constrained' problem with zero constraints. We can re-

ordertherows ofGandcncessary, andpartitionG= [G sothatG,

33



EU t N2

A2 E

Figure 3.1: Forming A1 from trapezoidal Ej

is square and non-singular. It then becomes easy to write a set of modified

Kuhn-Tucker equations analogous to equation (3.4): A, consists entirely of G1,

b, equals cl, and an identity matrix I replaces K. In chapter 4, it will prove

helpful to view the unconstrained problem this way.

In each of the algorithms we consider, we will repeatedly solve systems of

equations which have A, and A' as the coefficient matrix. Thus, the key to

using the modified Kuhn-Tucktr eiuations is producing an A, which is easily

invertible. The most convenient form to seek is ani upper triangular matrix. If

G has full column rank (a stronger Aumptiou than 112), one way to accomplish

this. depicted in figur! 3.1, is a.s follows.

1. Use Gauss Elnination (or orthogonal remuction) with column pivoting to

replace E virith the upper trapezoidal matrix

E [El, ER, (3.6)

where EL is upper triangular and non-singular. Here the subscript t indi-

34



"cates "trapezoidal," while L and R indicate left and right respectively.

2. Apply the same column interchanges to G, and partition compatibly with

Et. Use orthogonal rotations on G and c to replace G with the non-singular

upper triangular matrix

G=[G21 G22 ] (3.7)

Here the leading subscripts indicate whether the blocks will become part

of G, or G2.

3. Define G= [0 G12 ]andG 2 = (G 21 G22 ],givingus

A=[EL GER]. (3.8)

While this method of constructing A1 is useful for analysis, it may not be

efficient: column interchanges may destroy exploitable structure in the matrices

E and G. Another approach, first proposed by James and Plemmons [20], is

to reduce E without column pivoting to produce a "stairstep" form E, (figure

3.2). Now form A, by interlacing rows of G with rows of E,. A permutation

matrix

P=(PL PRI (3.9)

defines the interlacing:

[Es]=PLE.+PRG,. (3.10)

Notice that the same permutation matrix (not its transpose) relates the stairstep

and trapezoidal forms:

EP=[ EAPL EP] [EL, ER } E.. (3.11)

35



Lj.,

Figure 3.2: Forming A, from stairstep E,,

When the matrices E and G reflect a substructuring of the physical do-

main, interlacing without column permutations is especially helpful for parallel

computations. Given a substructured equilibrium matrix, we can produce the

stairstep matrix E, in parallel by assigning each diagonal block of E to a sep-

arate processor. The only subtle issue is the possibility that a given diagonal

block does not have full row rank. To account for this possibility, we produce

the matrix E. as follows (figure 3.3):

1. Begin with E in substructured form.

2. Factor each row block in parallel. Terminate computations on a row when

the leading non-zero in that row is in the transition block.

3. Consider all rows which now have leading non-zeros in the transition block.

Move them (implicitly, using a pointer vector) to the bottom of the matrix.

4. Factor the transition block.

36



a. Begin with Substructured E b. Factor Row Blocks in Parallei

c. Move "Transition Rowse to Bottom d. Factor Transition Rows"

Figure 3.3: Forming Stairstep E, from Substructured E

If column pivoting is needed or desired when reducing E, one can preserve

the structure of E by restricting eligible pivot columns to those associated with

the current diagonal block of the matrix (however one must consider the effect

of such pivoting on both the matrix F and the intermediate fill required to

generate G). In any case, one can now complete the construction of A, by

interlacing (figure 3.4) exactly as we did above.

Notice that triangular solves involving A, provide opportunities for block-

based parallelism. One first solves for the unknowns associated with columns

of the transition block (i.e. the final block of unknowns). Once this is complete,

one can recover the remaining unknowns in parallel by assigning each diagonal

block of A, to a separate processor. A similar algorithm applies to triangular

solves with the matrix A4 as well.

One triangular solve of each type will occur in each iteration of the a4go-

37



SA1--'2

GA=

Figure 3.4: Forming A1 from Substructured E,

rithms we consider; in fact, these solves will account for a major percentage of

the execution time. Clearly the size of the transition block is a key limiting fac-

tor in the parallel performance of these computations. Also important, however,

are the relative size and structure of the diagonal blocks of A,: if these blocks

are of widely varying size or sparsity, the parallel performance of the triangular

solvel will suffer.

3.2 Algorithm BNP

The derivation of Algorithm BNP as presented in Barlow, Nichols, and Plem-

mona (4) begins with the modified Kuhn-Tucker equations

[3 1 (3.12)

38



where the symbols are defined in equation (3.4). The authors then rewrite this

system, applying block elimination to reduce it to block upper triangular form.

The result of this reduction is the system

A t1  K rY2 1-
I -A 2Ar'K rj = e 2 -A 2Aj'b 1  (3.13)

(A4 + A4A2AriK) Z [ A4(A2ATj 1 - c2)

Continuing as in (4], multiply the third block equation by AjT to obtain an

unsymmetric system in the unknown z3:

(I + Aj'"rA•AjAj 1K)z- = A-7AT(A 2 A-il - c2). (3.14)

To simplify this system, temporarily define B = Ai.rTA 2AAI, noting that

B i symmetric non-negative definite. Then, in teras of B, the system in -3

has the form

(I + BK):s = 4, (3.15)

where d temporarily represets the righthand side in (3.14).

Let

k (3.16)

be the rightmost block o the matrix K, noting that k(TR = I and kR T = K.

Moreover, observe that an arbitrary mittwx-matrix product of the form SR is

simply the right block of S, while RTS produces the lower block of S.

Now partition B compa9bly with K and R:

B• Bit B]. (3.17)

Given this partitioning, equaton (3.14) can be written a3
[I B(I+2 [A1]. (3.18)

39



Thus the lower block in the block upper triangular system (3.13) is itself block

upper triangular, and from its lowest block we obtain an equation in the un-

known ri:

(I + B22)rl = RTd. (3.9)

B,2 is symmetric non-negative definite, so (I + B22) is symmetric positive

definite. If we define the matrix

Y = A2 AT , (3.20)

then BA is simply YY, =ad the iystem in r, is the symmetric positive deflinte

Oystem

(I + YT Y)r = h, where h = Yor(A2AT' - C2). (3.21)

Algorithm BNP &ovts this system by the conjugate gradient algorithm,

working with the coemcient matrix in factored form. For this rmon, we will

oft refer to (3.21) simply as the BNP system. There ate n-rn1 unknowns

in the system, piom'ing a theoretical upper bound on the maximum number

of co•ugte gradient iteratdons uquired for conwgpe. Moreover, , Baulow,

Nicho• and Plemmus obwrve in (4J, Y may lack full column rank,

Rank(Y) Rmnk(R)

= n-rMn (3.22)

RAY) _<. mRo(Aj)

_< n~n, M, + M2 - n). (.3

Ti v us

P~az*kY, , min(n-mna^.+m-2-n)

M( # oft*$inG, # of tows tinG) (3.24)

40



If Y does in fact lack full column rank, then zero is an eigenvalue of yry

(with multiplicity determined by the rank deficiency), and the coefficient matrix

(I+YrY) has clustered eigenvalues at unity. This further reduces the theoretical

-maximum number of conjugate gradient iteratiol 3 required for convergence.

If G is square (as it is, for example, in the engineering application), then

m2--n, and the clustering analysis simplifies somewhat. For ml <_ in-1, the

maximum number of iterations is controlled by the column rank of Y, and must

be less than or equal to m, + l, which in turn is no larger than In. For m, a In,

the maximum number of iterations is bounded by the size of the BNP system,

and must be less than or equal to n-mr, which in turn is no greater than in.

Thus the theoretical upper bound on the iterations is at most In, with the worst

case occurn when m, = in. (At first glance, there is an apparent paradox

here given an ordinary least squares problem, which has zero constraints, the

analysis above suggests we should expect convergence in one iteration. But if

we have an ord tquarem problem with a "re G, then A, = G. We

ate presumino that systems which have At as the coefficient matrix are easily

solved. If this were the case for an ordinary least squarts problem, we would

have a trivial problem, and there would be no need to iterate at a.)

Of course, our goal is to find Y, not just P1. In principle, we could i-rate until

converSgece to solve for rt, then backolve throug equations (3.15) and (3.13)

to recover the solution y. In practice, however, we have another altnative:

the analysis in [41 shows that a vatiation of the conjugate gradient algorithm

applied to the BNP system generates all that is necessary to obtain an estimate

for y at each iteration.

To see why this is so, first note that KzA3 - i•r. This allows us to rewrite the

41



first equation in the modified Kuhn-Tucker system (3.12), producing a formula

relating y and ri:

AIV + kri = b. (3.25)

"Now apply the conjugate gradient algorithm to the BNP system, using an arbi-

trary guess of r.�°) Let r(k) represent the approximation to ri at the kth iterate,

and use equation (3.25) to define a corresponding approximation to y:

Y(") = A -1((b_ - rk)) (3.26)

Initialize Y',o) consistent with this definition.

At each iteration of the conjugate gradient algorithm, we will correct the

estimate of r, %i the standard way, using a recursion of the form

-i r= - (3.27)

Here ik is a direction vector, and yk scales that vector to the appropriate length.

Now from equation (3.26), we know that •(k+l) = A- 1 (61 - Rrk+l)). Substitute

(3.27) into the latter expression, and simplify to obtain

y(k+l) =Y(k) + ykql, where q, = AT'.1 ks, (3.28)

Thus we can update y(k) by a multiple of the direction vector qk in a man-

ner typical of the conjugate gradient method. The scale factor -k is already

available; we need it to update r(.). The vectot qk also occurs naturally in the

conjugate gradient iteration, so we can produce !(k) at each iteration for a fairly

modest cost (one so-called dense vector triid per itcration). Depending on the

number of iterations required to achieve convergence, this cost may or may not

be less than the cost of the single 'ix n spaxse triangular solve needed to deter-

mine y once the iterations are complete. In any case, the difference in the two

42



approaches is not likely to be a significant portion of the overall computational

effort, and both methods have performed with comparable accuracy and speed

in our experiments.

There is one other aspect of Algorithm BNP which differs from the tradi-

tional conjugate gradient algorithm. Let

S= (I + YTY )r( _) - (3.29)

represent the defect associated with the BNP system (we use the term defect

to avoid confusion with the least squares residual r). Recall that the quantity

v•'vh is needed within a conjugate gradient iteration to compute various scale

factors; it is also used to test for convergence. If we were to apply the classical

conjugate gradient algorithm to the BNP system, we would compute the defect

using an update of tLe form

Vk+1 = L% + a•k, (3.30)

where 4 = (I + YY)s is a direction vector, a, is a sWale factor, and both

thesm quantities ame needed esewhere in the iteration. Barlow, Nichols, and

Pletnmons take a different approach, however. Define

r1 = c2 -,42y1h1 (3.31)

to be the kth approximation to r2. If we initialize ro to the value required by

its definition, we can show by an argument 3imilar to the one above that the

iterates satisfy the recursion

Sr+') = r(*) - "/,Y3k. (3.32)

"43



We can now use r2k) to compute the defect. Begin by substituting equa-

tion (3.26) into (3.29) to find that

Vk = r +() + YT(c 2 - A 2Y(h)). (3.33)

Then use the definition of rk) given in (3.31) to obtain

r(k) T(k).(34
V= + YTr 2 (.

This method of computing the defect requires the same computational effort as

the standard method of explicitly using a scale factor and direction vector.

We summarize the complete algorithm in table 3.1. This particular outline

obscures opportunities to avoid redundant calculations, but will prove useful for

the analysis in chapter 4. See the original paper [4] for a version suitable for

implementation.

Our experiments suggest, however, that equation (3.34) is somewhat un-

stable: we obtained superior results with a conventional update of the defect,

especially on large problems (the BNP method of updating the vector y appears

to present no difficulties). Apparently the defect gradually drifts from the cor-

rect value, causing the direction vectors and scale factors to become inaccurate,

and resulting in slower convergence. Barlow, in a private communication [3],

he3 obwrved that this is most likely because the independent updates of ri,

r2, and y do not enforce the relationships which must exist among these three

quantities. Fortunately, the problem is quite easy to correct (see chapters 5 and

6): a traditional update of the defect improves performance, while preserving

the spirit of the BNP algorithm.

We remark in passing that algorithm BNP has one other interesting prop-

erty. The quantity 14k) is defined to be equal to c2 - G2y(k). Additionally, a

44



Table 3.1: Algorithm BNP (Problem LSE)

1. Initialize:

(a) y(O) arbitrary (normally y(o) = AT1b 1 )

(b) r(O) = .CT(b - A 1y(°)) = cl - Gly(0 ) (normally rj0 ) = 0)

(c) r(O) 0)--()r2° = c2 - A2Y€°) = c2 - G2Y(°

(d) vo =-o) + YTr(o) (vk is the defect (I + YTY)rk') - h)

(e) Jo = Vo (Sk is the direction vector)

2. For k = 0,1,..., until vvk < tolerance:

(a) 'y, = V' k,•l/T (I + YY)Sk

(b) r(k+l) = ,(k) - 'kSk

(c) Y (k+l) - (k) + 7ykA 1•/•k

(d) -r2k+'#)r2 - Y)kyk

Yk+ - +l

(f) flk+l = flkIVk

(g) -k+1 = 4k+1 + J6,+1Sk

45



simple induction argument confirms that the vector rk), the BNP unknown,

satisfies a similar natural relationship: rjk) = cl - Gly(k). This means that the

vector k)] is precisely the residual r(k) = c - Gy(k) associated with the kth
approximation to the solution vector y. Of the four basic iterative algorithms

we will consider, algorithm BNP is the only one with this satisfying property.

3.3 Other Iterative Algorithms

There are, of course, other established iterative algorithms for solving problem

LSE. Two such methods, p-cyclic SOR and block AOR, are parameter-based lin-

ear stationary methods appled to the modified Kuhn-Tucker equations (3.12).

The third, a preconditioned form of the weighting algorithm, is closely related

to the modified Kuhn-Tucker formulation. We introduce all three algorithms

here, with an eye toward comparing and contrasting these methods with BNP

in ciapter 4.

Given a non-singular linear system Cz = f, let C = D - L - U define a split-

ting of the coefficient matrix into block diagonal, lower triangular, and upper

triangular parts respectively. The well-known block SOR algorithm (see Young

[38], and Hageman and Young [14]) is then defined by an iteration involving a

relaxation paramete~r w.

(D - wL)z(h+l) = [(1 - w)D + wU] z(h) + wf. (3.35)

If we consider the modified Kuhn-Tucker system (3.12), two plausible choices

of the block diagonal matrix D produce three- and two-block SOR methods

46



respectively:
° =A , A ,[ and ] A A 2 1 • (3.36)

-- AT, T

While little is known about the optimal iteration parameter w for arbitrary

linear systems, the coeicient matrix in the modified Kuhn-Tucker system enjoys

some special properties which make a more complete analysis possible. When

the coefficient matrix of the modified Kuhn-Tucker system is partitioned using

either D3 or D2 , it is a so-called p-cyclic matrix, and the associated SOR algo-

rithms are known as p-cyclic SOR methods. An elegant theory, due largely

to Young (39] and Varga (36], (37], relates the spectrum of the SO,. iteration

matrix to that of the corresponding Jacobi iteration matrix. This p-cyclic the-

ory, combined with special properties of the Jacobi iteration matrices associated

with D2 and D3, leads to a number of important results for p-cyclic SO,. applied

to problem LSE. In particular, Plemmons [30] has established that 2-cyclic SOR

applied to LSE converges for sufficiently small values of w (there may or may

not be values of w for which 3-cyclic SOR converges). Additionally, Markham,

Neumann, and Plemmons [241 have shown that the asymptotic convergence of

optimal 2-cyclic SOIl, is superior to 3-cyclic SOIL Pierce, Hadjidimos, and Plem-

mona [29], and Eiermann, Niethammer, and Ruttan [101, establish results for

more general problems, demonstrating the importance of the special properties

of the modified Kuhn-Tucker system.

Another approach to solving the modified Kuhn-Tucker equations is a two

parameter generalization of SOR known as Accelerated Over-relaxation or

AOR (see, for example, Hadjidimos [131):

(D - /L)z(k') = J(1 -w)D + (w - #)L +wU] z(P) +wf. (3.37)

47



Note that the special case w =- is block SOR.

Again we consider the blockings given by (3.36), referring to the correspond-

ing algorithms as 3-AOR and 2-AOR respectively. The optimal choice of pa-

rameters for 2-AOR occurs somewhere on the line w = fl (see Papadopoulou,

Saridakis, and Papatheodorou [28]), so optimal 2-AOR coincides with optimal

2-cyclic SOIL Optimal 3-AOR, however, does not necessarily occur when w = fl.

In fact, Papadopoulou et- al. establish in (28] that under some very restrictive

(and highly technical) conditions, the asymptotic convergence of 3-AOR may

be better than optimal 2-AOR (and therefore 2-cyclic SOR).

Table 3.2 is an explicit description of the 3-AOR algorithm applied to prob-

lem LSL Remember that the matrices K and K are defined in equations (3.12)

and (3.21). Technically, we could initializm r,4 and r?°) to arbitrary values. As

defined in the table, however, the initial values are both mathematically plau-

sible and consistent with the BNP iteration (unlike BNP, however, subsequent

iterates do not tisfy rrh) = cl- G•(h) or r?) = cl- A2 (0)). In any caSe,

our experiments suggest the method is not particularly sensitive to the choice

of initial iterates.

We can solve problem LSE in yet another way, this time by viewing the

problem in an entirely different manner. Let r be a large positive constant, and

consider the ordinary least squares problem

. .i . HWe - 42, (3.38)

where W and I are given by

G c

48



Table 3.2: Three-Block AOR (Problem LSE)

1. Initialize:

(a) Y(o) arbitrary

(b) r2() = c: - A2y(°)

(c) ,r?) = c - Gly(°)
(d) A•() arbitrary

(e) 40) = [ O) ]
2. For k = 0, 1,..., until convergence:

(a) Y(1+*) = AT'(b, - Kzr)) = AT'(bj - Rr,&))

(b) ,2,,i) = c2 - A2 [(1 - fl)y(k) + ,l(,,)]

(c•) A".", = -A•-,' [(1 - ,),-•' + p,,.'+I)]

(d) +h1) = (1 - ) y() +, )

(k+I)
(e) r3(1+1) (1 Ld4r+4J2(f) 4*+1) = (1 - •,,•)+,. +.

49



This is a special case of a so-called weighted least squares problem, or WLS

(see, for example, Bjorck [7], or Golub and van Loan [12]).

Note that

IIWz, - biIl = T2 IEY - biIl + IjG• - cll2. (3.40)

This means that any candidate solution y which fails to satisfy Ey ; b will cause

the quantity hjWy - •111 to be exceptionally large. Thus, r acts as a penalty

parameter forcing y to come very close to satisfying the equilibrium constraint,

and we might expect that the solution to this weighted least squares problem

i, to a good approximation, the solution to problem LSE. Given a reasonably

conditioned problem and a well chosen value of r, the analysis in Barlow [2]

suggests that this is in fact the case.

This approach to solving problem LSE, known as the weighting method,

has & fairly long history (see Bjorck [7]). Most algorithms based on this method

solve the weighted least squares problem (3.38) by some direct method (e.g.

an orthogonal factorizaon). Here, however, we consider an iterative approach

based on the factored form of the normal equatios

WrWu = W& (3.41)

Anticipating the likelihood that this system is poorly conditioned, we seek to

precoadition the problem.

To construct a precanditioner, first note that the matrix W as defined above

is nbthing more than a scaled version of the matrix [ 0] wihapasi
"Kuhn-Tucker equations (2.6). Thus, we can reorder and repartition it exactly

as in §3.1. In particular, reorder the rows of G and c, and partition

-,(342)

G2



so that the matrix defined by

- irEI (3.43)

"is square and non-singular. Define W2  G2; we now have

- W2 (3.44)- = IW, I"

Given this partitioning of W, we can rewrite the normal equations as

(WIr2 W + W2
TW2)y = WT &. (3.45)

Now precondition with W, in the standard way:

WjT(W1 W1 + WrW2)Y7'Wiy = WiTWTb, (3.46)

or

(V + CT C)w = WjTrW&, where C = W2W• 1, MY = wj. (3.47)

We can now apply the coajugate gradient algorithm to this system, leaving the

coefficient matrix in factored form. We refer to this method of solving problem

LSE as the preconditioned weighting method, or Pwgt.

Superficially, the system in (3.4T) appears to mimic the BNP system (3.21).

Remember, however, that this is not a reduced order problem: the size of the

system remains nxn. Still, there is a relationship between BNP and the precon-

ditioned weighting method. We will make the connection explicit in the next

51



4. Comparison of the Algorithms

In chapter 3, we introduced algorithm BNP as it appears in [4], and outlined

three other iterative algorithms for solving problem LSE: p-cyclic SOR, block

AOR, and a preconditioned form of the weighting method. We are now inter-

ested in comparing algorithm BNP to each of the other three methods.

The relationship between BNP and p-cyclic SOB. is already well under-

stood: despite the elegant convergence theory for p-cyclic SO%. BNP is su-

perior in exact arithmetic. This was established by Freund (11] for uncon-

*trained least square problems, and by Barlow, Nichols and Plemmons (4] for

equality constrained problems. More precisely, if y(o), -'P) - c2 - G2y(°), and

rr) = cl - Gry(0) serve as initial iterates for both BNP and 2-cyclic SOR, then

the iterates at suabaquent steps ati the inequality

U,- Gs4,9 1 12 • (If- • (4.1)

While the authors state their result explicitly only for 2-cyclic SOR, it holds for

3.yclic SOR aswell. This isa corollary to the main reult in §4.2, but it is no

surprise: we have already mentioned (see [241) that the asymptotic convergence

of 2-cyclic SOR is better than the 3-cyclic approach.

In this chapter, we consider the relationship ef algoritbm BNP to the other

two types of iterative methods outlined in chapter 3. Ada ting the arguments of

both Freund and the authors of BNP, we extend their work to show that BNP is

52



also superior to block AOR. We prove this for unconstrained problems in §4.1,

and for constrained problems in §4.2. Then, in §4.3 we show that algorithm BNP

may be viewed as the limiting case of the preconditioned weighting method.

Note that all the methods require the same pre-iteration processing (fac-

toring E and F, and forming the preconditioner by augmenting the factoi'jd

equilibrium matrix) and essentially the same computational effort per iteration

(two triangular solves and two matrix-vector products dominate the computa-

tional edort). Thus, comparing the total number of iterations needed to achieve

convergence is a meaningul way to compare the relative performance of these

methods.

4.1 BNP vs AOR: Ordinary Least Squares

Our Sa is to establish that BNP applied to problem LSE is superior to block

AOR in exact arithmetic, by proving a mult analogous to equation (4.1). Since

optimal 2-AOR coincides with optimal 2-cyclic SOR, it suffic&s to consider

3-AOLP The proof follows the spirit of the arguments in Freund (III and Barlow,

Nichol, and Plemmioas (41, and proceeds in three steps:

1. Given an ordinary least squares problem (no cons-tratiats), we consider

algorithm BNP applied to the problem, and examine the properties of the

iterates.

2. Given the same ordinary least squares problem conoidered in step 1, we

study the properties of 3-AOR applied to the problem, and establish that

algorithm BNP is superior to 3-AOR for this unconstrained problem.

53



3. Given an equality constrained least squares problem, we construct a re-

lated ordinary least squares problem. We then establish a relationship be-

tween the iterates generated by BNP applied to the constrained problem

and the iterates generated by BNP applied to the unconstrained problem.

We do the same for 3-AOR as well. Then the results of step 2 allow us to

conclude that BNP is superior to 3-AOR for problem LSE.

We complete steps 1 and 2 in this section. In the next section, we relate the

constrained problem to an ordinary least squares problem to complete step 3.

To prevent confusion, we use 4 tilde (-) over many of the quantities associated

with the unconstrained problem of this section.

Begin with the ordinary least squares problem

minitize HAS - 4,(4.2)

where A has full column rank. View this problem as a 'constrained' least

squares problem with zero constriints. The choice of z as the unknown will

prove convenient in the next secton.

By analo with ( .32), re'xdce the rows of A and I a necessary, and partition

the coefficient matrix

A 1z. -(4.3)

so that A• is square and noa-ingular. Partition the veitor

(4.4)

compatibly. The resulting modified Kuhn.Tucker equatioas are similar to those

in (3.4), except the identity matrix replaces the matrix K, and there is uo

54



Lagrange multiplier:

FA, o 1~ 2z rA7 0 o =]• (4.5)o A2T , 0

Note that BNP and 3-AOR as outlined in §3.2 and §3.3 are perfectly well

defined for this system. To obtain the unconstrained equivalent of the BNP

system (3.21), simply replace R with the identity matrix I, and substitute A1,

A2, h, 1, F f2,i andX for A&, Al, bi, c2, r1, r2 , and y respectively. In particular,

by analogy with equation (3.20), note that

The BNP system for the unconstrained problem can then be written

(I + frf,)i = h, where , = kr(fe• - &,). (4..)

Now apply the conjugate gradient algorithm as given in §3.2. For con-enieance,

we describe the algorithm explicitly in table 4.1.

The AOR algorithm is just as simple to modify, but the absence of -3 cha•ges

its appearance soMewhat. See table 4.2 for an explicit description of the algo-

rithm.

We are now prepard to proceed with the proof. In the discussion below, we

use the foWowing notatio: if w is a vector, and S a set of vectors, thenw + S

represents the set {(w + s : -. E S}. Similarly, if B is a a-atrix, then BS is the

set {Bs : 3 E S}. If 5 is convex, so arew• + S and BS; if S is a vector ubspace,

BS is a subpace as well.

55



Table 4.1: Algorithm BNP (Unconstrained Least Squares)

1. Initialize:

(a) z(O) arbitrary (normally z(O) = ,T k)

(b) •°•) = I - A•x(°) (normally F(O) = 0)

(c) f2) = k - A- o)

(d) Do = f(o) + f1A0o) (Ph is the defect (I + f-Tfp)j(k)- A)
(e) ,•o = Do (4k is the direction vector)

2. For k = 0, 1,..., until Pf k < tolerance:

(a) lk = pk~/1S(I + fTIk)jk

(b) !+1) = ,k -- %k

(c) z(k+1) = z¢h) + •kA 1
1Sh

(d) k�1 = +

(f) 4+, = •i•+,•+ +,

(g) jk+1 = fk+1 + ,k+1,k

56



Table 4.2: Three-Block AOR (Unconstrained Least Squares)

1. Initialize:

(a) x(OI arbitrary

(b) Io) = ý2- A2z-(O)
(c) •°•) = k - A•x(o)

2. For k = 0, 1,..., until convergence:

(a) T(k+) -= A•r( - f(k))

(b) F•4k = ; - A2 [(1 - #)(k) + #X(k+)

(c) j' =-A-TA2 [(I - P)F2(") + f~~

(d) z€k+) (1 - w)X(h) + wx(h+j)

(e) ( wf)4 k+ f)
(f) •jk+i) = (I. -,w)4&') +,,,,'•

57



Let z~o•)(O) = - Ali( 0)o and F2) -2-_ AX(o) define a single set of initial

iterates for both BNP and 3-AOR. Define the following vectors in TI:

o= + Y T b2  (4.8)

vo = (-(A, + TA 2)z(°) (4.9)

o= ,"10o (4.10)
= AVr(k + k'k)

Wo = I o (4.11)

= tbo- A'(A, + ,?TA2)xo(.

Additionally, let

1- = AT'M A, = A'kTA21 (4.12)

noting that

too = tDO - (I + t)x°). (4.13)

Finally, define a sequence of Krylov subspaces:

So = {o}

Sb = span{Wo,bwo,...,I klwo}. (4.14)

Lemma 4.1 (Freund) Let z(O), (0) = - A2.T(o), and 4o) =, - Aix(o) be

initial iterates for algorithm BNP applied to the ordinary least squares problem

(4.2). Then the kth iterate z(k) lies in the set x(°)+ S,. Moreover, x(h) minimizes

the residual If11 2 =III - AxI12 oVer all X in X(0) + Sk.

Proof. See [11]. C

58



Theorem 4.1 Let () i(°) - - A201), and fjo) = Aix(O) be initial

iterates for both BNP and 3-A OR applied to the ordinary least squares problem

(4.2). Let x p and )oR represent the kth iterates generated by the two algo-

rithms respectively, and define -k) _I - AX~k ad _Ak2) _ I_ to b)

the associated residuals. Then the iterates satisfy the inequality

IVB)NPIt 2 _< IiAR)11j2

in exact arithmetic, regardless of the AOR iteration parameters.

Proof. By Lemma 4.1, it suffices to prove that the AOR iterate XA.R lies in

x(°) + Sk. Suppressing the "AOR" subscripts for simplicity, we accomplish this

by establishing the following relationships:

(a) X(k) E x(o) + Sh-1

(b)&2 -(-i)E A2 (zT(0) +I Sk-1)

(c) f - •(•) E A2(z(o) + Sk_1)

(d) E_ + ' ( - ?A 2(x(_ ) + sk-)

(e) • + k ET ) Vo - YTA 2(X(O) + Sk-1)

(I ' •-)E•o -kTA(-T() + sk_•)

(g) _ k) E Ai•(o) + span{vo} + A2f•TSk_1

(h) X(k+½) E T0o) + Sk

Our goal is to establish the first of these relationships; the others are means

toward that end. We argue by induction. Listing the early iterates explicitly,

59



we have:

X(½) = X(O)

-(1) -(0)

i = r_

I-(1)T (20)X(I) = X(o)

X(I+½) = (o) + WWO.

Use these values to confirm that each of the inductive hypotheses holds for

k = 1. Now assume all eight hypotheses hold for a fixed k, and consider k + 1.

Proof of (a): Since z(O) + Sh-1 is contained in z(°) + Sk, inductive assumption

(a) tells us that z(h) is an element of x(°) + Sk. By assumption (h), x(k+1)

is also in this set. Thus, by convexity, z(k+') = (1 - w)z(h) + wx(k+i) is in

x(°) + Sk as required.

Proof of (0): Equation 2(b) of table 4.2 tells us that

S- 44+i) = 1 2 [(1 - 0)x(k) +,O(,+i)

By assumption (a), we know A22z(k) is contained in A2(x(0) + Sk-I), which

in turn is a subset of A2 (z(O) + Sk). Moreover, A2X(b+f) is in the latter

set by inductive assumption (h). Thus, by convexity, 2 - r+ is in

A2(z(O) + SO) as required.

60



Proof of (c): From assumption (c) and the containment argument used above,

we have that L2 - 2(k) is in A24(z(O) + Sk)o The proof of (b) tells us that

- f k+4) is in the latter set as well. Rearrange equation 2(e) of table 4.2

to see that - f2(k+1) is a convex combination of 2 - f2k) and L - 4k+f),

and so is in A2(¢(O) + S&) as required.

Proof of (d): From the definition of Oo in equation (4.8), and the definition of

42k+i) in table 4.2, we find that

ki + kT2ki o- if"A 2 [(1 - #5)z(k) + X+I

Assumptions (a) and (h) combined with convexity then give us the re-

quired result.

Proof of (e) and (f): Similar to the proof of (c).

Proof of (g): By assumption (g), there is a scalar a, and a vector z, in £tTA 2Sk,

such that

k -4t) = A•izo + ao + zi.

By the proof of (f), there is a X2 E ?TA2Sk such that

k --•'"0 = 00 - i'•'2,Tc° + .

Let z = (1 - w)zl + w:2 , and note that z f ktA2 Sk. Rearrange equation

2(f) of table 4.2 to obtain

k f(&41,) -(1 - WA( - A)) + W(k~ +)

Remembering that vo = o - (A, + ,TA2)z(o) use the expressions for

S- .()and F - •+i) to find that

S_ b+, = Als(o, + a(l - w_) + wvo + z,

61



which is in Aix(o) + span {to} + f'TA2Sk aS required.

Proof of (7h): From table 4.2 we have z(k+1+I) = AT'-(k - ý(k+1)). By the proof

of (g), there exists a scalar such that

r~+)e A~z(0) + -Yvo + TASik.

Recalling that to = AI'vo, these two facts tell us that x(k+1+i) is in

the set z(O) + -Yuo + ATi'TA 2Sj. But two is an element of S+1 , and

Ai'tTA2Sk = ASk, which is a vector subapace of S•.t. Hence x(k+1+i)

is in z(o) + Sk+ as required. 03

4.2 BNP vs AOR: Constrained Least Squares

In the previous section, we proved that in exact arithmetic, BNP applied to an

unconstrained least squares problem converges at least as fast as 3-AOR. To

extend this result to constrained least squares problems, we establish a connec-

tion between problem LSE and a specially constructed unconstrained problem.

The argument below is an adaptation of Theorem 2.1 in Barlow, Nichols, and

Plemmons [4], and is based on a special case of the classical nulispace method

(see §5.1)o

Consider problem LSE as given in equation (2.1), and the associated modi-

fied Kuhn-Tucker equations (3.4). Define the matrix

N=A-'f = Ai'[0[]0 (4.15)

Observe that

[ A-' - A1 A' 1 [ 0] (4.16)

62



This means EAT' [ I I0 , so EN = 0. Moreover, N has n-m 1 linearly

independent columns, so the columns of N form a basis for the nullspace of E.

By a similar argument, the vector

y, = AT% (4.17)

is a particular solution of the constraint Ey = b. Note that any vector satisfying

the constraint can be written as Y = y,+Nx for some choice of x, and minimizing

IIGy - c112 subject to the constraint amounts to minimizing IlG(y!I + Nx) - cJ12

over all possible z. The latter minimization is an unconstrained problem of order

n-m 1. Isolating the unknown x, we have the ordinary least squares problem

minimize llAx - S112 where A = GN, c = e - Gy,. (4.18)

Referring to equation (4.16), we find that

GIN r 1 (4.19)

where Y = A2Ajk is as in the BNP system (3.21). Additioaally,

Gty,9= GIA- P [c J = cl, (4.20)

so cl - Gyp = 0. A-l of these relationships give us an elegant form for the mod-

ified Kuhn-Tucker system associated with the ordinary least squares problem

given in (4.18):

[x I2 ] 2yp (421)

Y 0 0 ý2 a- C60 y7l I ,

63



In terms of the notation from the previous section, we have

41= -- (4.22)

A2 = Y (4.23)

=- 0 (4.24)

= c2 - A2ATIjb. (4.25)

Now let y(o) be an arbitrary initial iterate for both BNP and 3-AOR applied

to problem LSE. There is a unique x(0 ) such that y(O) = yp + Nx(O); in fact, the

correct value is given by

x(o)= =RT(Axy(O) - b). (4.26)

Use this value of xQ°) as the initial iterate for BNP and 3-AOR applied to the

ordinary least squares problem (4.18). We now define tWe corresponding initial

residual iterates, and relate the subsequent iterates for the constrained problem

to those of the unconstrained problem.

Lemma 4.2 Let y(O), r2() = c0- A2y40), ond r(°) = c - G (o be initial iterates

for BNP applied to problem LSE. Define x(°) as in equation (4.26), and let x(°),

F 2(O) -2X(), and 410) = -• _z(o) be initial iterates for BNP applied to

the related ordinary least squares problem defined in equations (4.18) through

(4.25). T1hen suequent iterdt& satisfy y(k) = Y1, + N:(h).

Proof. Refer to tables 3.1 and 4.1. Remembering that a tilde (') represents

a quantity associated with the ordinary least squares problem, we prove by

induction that y(k) = y, + Nz(h), r( *), = - I, PI = P, and s, = 3

for all k.

64



First consider k = 0. We know y(o) = y; + Nz(o) by the definition of x(O).

Since At1 = I and L = 0, we have F, - _(o), which is -_Q(A1 y(O) - b1). But

RAIA = Gi and A"Tb1 = cl, 30 fo) -. - Gi(o), which is r4°) as required.

Additionally, simple substitution tells us that F(0' is c2 - A2(yv + Nz(0 )). This

is C2 - A2y(°), which is r2(0) as required. Finally, note that the initial defects and

initial direction vectors satisfy tt = io and 0 = so trivially.

Now assume y(k) = y, + Nz(k'), d = ,4) -= , -' f%, and 3 = jk

are all true for a fixed k, and consider k+1. When BNP is applied to the

ordinary least squares problem, we have Y = A2AT1 = Y. This, combined with

the inductive assumptions, gives us -y, = 5i immediately, from which we get
) = gz) r&,÷) 4I4) and Pk+, + +. We can then conclude that

94+% = w+, from which we obtain a,+, = S•+ as required.

Finally, we know y(,+l) = y() + ,yAT'Rak. Recalling tha t = I, we have

AjTR = ATIN, Moreover, sk = J and y(k) = Y, + Nz(k) by hypothesis. So

V00,) = y + N(PQ) + -yiAA's), which is yp + N:P+%' as required. 0

Lemma 4.3 Let r2(0) r c2 - AIV(*), 0) Ct - Giy(O), and AM be initia

ittrata for S.A OR applied to problem LSE. Define z(o) as in equation (4-06),

and let P(), 40)= A2z(O)* and rit40) = & - AixI(O) be initial iterates, for

3-AOR (with the same choice ofw anid f) applied to the relaied ordinary Ieast

SqUares problem defined by eguations (4.18) through (4•5). Then subsequent

iterates sciisfij 3 /(i) = yp + Nz(&).

Proof. Refer to the description of the algorithms given in tables 3.2 and 4.2.

We establish by induction that Y(#) = Y, + Nxz(), r =A&) , and r(*) = i4•.

The ca•. k = 0 is in the proof of Lemma 4.2.

65



Now assume y~)= yp + Nx(k), (4k) = -(k), and (4k) = ,jh) axe true for a fixed

k, and consider k + 1. Since A1 = I and L = 0, we know that z(P+f) _

for all k. By the inductive assumptions, this means z(k+i) = -rjk). Af-

ter this substitution, the defining equation y(k+f) = AT'(b1 - r(-rk)) becomes

Y(4) -= yp + Nz(OIk•). We also know that y(k) = Sf .+ Nz(k) by inductive as-

sumption. Thus, we find that the equation 1(k+) = (1 - w)y(k) + wv€k4d1 be-

comles

Y(k+,) = sp + N ((1 - w){(k) +

which is yr, + Nz(++') as required.

We obtain r•') = r4+1) by a straightforward substitution. Observing that

r(k) = Tzr), asimple substitution produces rj+') = W+1) a el

Lemma 4.4 Let y(O), r,) = c: - Ay(°l, and rA0) = ct - Giy(°1 be initial ierates

for either BNP or 8-A OR applied to problem LSE (the choice of AM°) in S-A OR

is immaterial). Define z(o) as in equation (4.86), and let x(0 ), 40) = I
MW f$0) h - AP,(o) be initial iterates for the same algorithm applied to the

related ordinary least squares problem defined by equations (4.18) through (4.25).

Mshe the residuaLs C - Gy(k) and I - Az(k) are equaL

Proof. By Lemmas 4.2 and 4.3, we know that y(') = YP + Nz(k). This means

that c- Gy(h) = (c- Gy,,) -GNz(). But GN = A and c-GG =• by (4.18),

so the result follows. (

Theorem 4.2 Let y(o), r(o) = c2 - A2y(°), and A10) = cl - Gly(G) be initial it-

ecraes for BNP applied to problem LSE. Let the same quantities with an ar-

bitraro A) serve as initial iterates for 8-AOR. Let y9,)p and P)R represent

66



the kth solution iterates generated by the two algorithms respectively, and define

-M~r = C - Gy )J and r~j - c - Gy1AOR to be the associated residuals. Then

the iterates satisfy the inequality

Nrjj_( I 11 II41O(R1 112

'n ezact arithmetic, regardle of the AOR iteration parameters.

Proof. Apply BNP and 3-AOR to the related ordinary least squares problem

defined by equations (4.18) through (4.25). By Lemma 4.4 we have

46 - A46v

.(k+') _ ,L(k-,-)
OR = - AOA "

The result then follows from Theorem 4.1. C

While the theorem applies to calculations performed in exact arithmetic, it

sugeMus that BNP should outperform 3-AOR on problem LSE. Our numerical

experiments (see chapter 6) suggest that this is in fact the case.

Finally, we obtain as a corollary the fact that algorithm BNP is superior to

optimal 3-cyclic SOL. Since we know that optimal 2-cyclic SOR is asymptot-

ically faster than 3-cyclic SOR for problem LSE, this merely formalizes what

one would expect.

Corollary 4.1 Let y(o)) r?) = c3 - A2•y)0 , and r4°} ) ct - G•y( 0) be initial

iterates for BNP applied to problem LSE. Let the same quantities with an arbi-

trary A•(° serve as initial iterates for $-cyclic SOR. Let y9ep and 9{0oi represent

the kth solution iterates generated by the tuwo algorithms respectively, and define

67



(k} (•,) ..(k) ,
rp--Gy and r - to be the associated rer-duals. Then

the iterates satidfy the inequality

in eact arithmetic, re• ardless of the talue of w.

Proof. The result in %dheorem 4.2 hold regardless of the AOR parameters. In

particular, it holds fothe special case w = P, which is 3-cyclic SO1L

4.3 BNP and Preconditioned Weighting

It is at least mildly surprising that algorithm BNP is also closely related to the

preconditioned weighting method decribed in §3.3; we detail the connection in

this section. The analysis holds when the preconditioner W, is formed by inter.

lacing, but the permutation matrices used to define the intWis.--wng ,unnecessarily

complicate the notation. For thzt easoa, we proteed uin the augmentation

technique based on the trapezoidal matrix E& (§31).

Following the notation in §3.3, we begin with the wmatrix W and

the vector 6 [ I j . We then applyythe couugate "iontalgorithm to the

factored linear system

(I + CTC)W = w; , (4.2T)

where Wt r [E and W2 = G2 are the upper and lower blocks of W respec.

tively, C is the matrix WXýW, ar.- the vector w = Wly is the new unknown.

1aU from §3.3 that 114 6 non-singular.

Now let E be the trapezoidal matrix E, E r ER I defined in equa

tiou (3.6). If we form W1 and W2 using the augmentation technique described

68



in $3.1, we obtain
W I= r&L ER (4.28)

W2 = [G21 Gn- ] (4.29)

where G is given by

G=[G21, Gn]" (4.30)

In this cue, the righthand side Wi'TW4& becomes

WgW T& -Lrb?]+cT C'. (4.31)

We can now explicitly calculate the- inv-rse of WI:

w-= -EZ'ERG2'IV I" (4.32)

This in turn allows us to rewrite ihe preconditioned system (4.27) as

(I +tr"Vl 1 V) i-IVTY H*WL 14.33)
r-Wzg (I+ YMY) W IR 2

where

w W (4.34)

V = %SEL,• (4.35)

and Y is as in equation (3.20). In the limit as r co, the coefficient matrix is

[ I (I + Y-TY) 1 (4.37)

Loosely speaking, therefore, one would expect the conjugate gradient method

with the coefficient matrix given in (4.33) to perform as if the matrix was 'al.

most' block diagonal. The algorithm should ptoduce UL in a vey small nunMbr

69



of iterations (the associate'l diagonal block is nearly the identity matrix), and

it should act like algorithm BNP on the lower block of the system. In a sense,

then, BNP may be viewed as the limiting case of the preconditioned weighting

method. This is true despite the fact that PWgt solves an nxn system rather

than a reduced order problem. In the limit as r -, 00, the m, leading unknowns

in the PWgt system are determined by what amounts to a trivial linear system,

and the method acts as if it were an order-reducing algorithm applied to the

lower (n-rn) unknowns.

When formalizing the connection between the two schemes, however, there is

one subtle point to note. It is tempting to start with the block system in (4.33),

delete terms involving negative powers of r, and expect to recover algorithm

BNP. It would quickly become clear that this does not work.

The problem is this: while the lower left block of the coefficient matrix is

0(,r- 1), the vector WL is 0(,r). Thus the product of these two components is

0(l) and cannot be ignored. To see why this is so, recall that w = Wly by

definition, which means
wL J ,rEt ] G . (4.38)

Thus

wL = rEty, = •rb, (4.39)

and there is no need to compute WL at all.

But there is also a natural interpretation of the lower block wR. From (4.38)

as well as the definition of r1 given in equations (2.6) and (3.4), we have

wR R= Gly =i c - ri. (4.40)

Now, armed with a clearer picture of what the blocks in w represent, we can

7G



use (4.39) and (4.40) to produce algorithm BNP from the weighting method.

Begin with the second block equation in (4.33):

-YTG 21E•1wL + (I + YTY)wR = C1 + YTc2. (4.41)

Now substitute (4.39) and (4.40) into this equation, and rearrange to obtain

(I + YTY)r1 = YT(Ycl + G2 iEE1 b - c2). (4.42)

Note that the substitutions have eliminated r entirely; in fact, minor simplifi-

cation of the righthand side produces the BNP system (3.21).

Of course, the BNP unknown and righthand side are different than those

for the preconditioned weighting method, so we can expect some variation in

relative performauce from one problem to another. Moreover, each method has

its own advantages and disadvantages. BNP, for example, is a "parameter-free"

algorithm, while PWgt requires the user to specify r: if r is too small, the

solution to the weighted problem will be a poor approximation to the solution

of problem LSE; if T is too large, then underflow, overflow, or roundoff errors

will degrade accuracy or prevent normal termination. A single PWgt itera-

tion, on the other hand, is generally slightly faster than a corresponding BNP

iteration: BNP requires gather/scatter vector operations (multiplications with

permutations of k and kT) that are not needed in the weighting algorithm. We

demonstrate in chapter 6 that the algorithms do indeed perform comparably,

but that neither is clearly superior to the other.

71



5. Implicit Nullspace Methods

Algorithm BNP as originally proposed has at least two limitations we wish to

overcome. The first concerns the conditions under which we can successfully

construct a suitable preconditioning matrix A1. Theoretically, assumptions H1

and H2 in §2.1 are sufficient: if E has full row rank, and [ E ] have full column

rank, then one can find rows of G to construct G1 so that A1 = [E ] is

non-singular. In practice, though, it may be quite difficult to determine the

correct rows of G to use [5]. Moreover, even if we can identify suitable rows of

G, the resulting A1 may not be easily invertible.

As long as G itself has full column rank and relatively simple structure, we

can successfully produce an upper triangular A1 by iuterlacing (§3.1). Suppose,

though, that G lacks full column rank. Then, given a specified column of G,

there may be no row of G with leading non-zero in that column, even after

orthogonal reduction. If we need such a row to augment the stairstep matrix

E,, we will not be able to produce an upper triangular A1 by interlacing.

Even if G has full column rank, we may encounter difficulties forming A1

by interlacing. Suppose it is impractical to reduce G to upper triangular form

(this is true, for cxample, in the Stokes problem described in §2.3). In this case,

interlaciug can only succeed if the unreduced (or partially reduced) matrix G

has rows with leading non-zeros in all columns in which E, does not have leading

72



non-zeros. Fortunately, G as given in §2.3 has rows with leading non-zeros in

every possible column, but this is merely a consequence of the simple geometry

we chose for the domain.

The second difficulty concerns problems expressed in the saddle point form

given in (2.9); again, the Stokes model is a good example. Here the vector c,

which is needed to form the righthand side of the BNP system (3.21), is not

generally available; instead, the vector a = -G're is specified. Depending on the

structure of G (if G is even known), it may or may not be practical to determine

c explicitly.

One way around this obstacle is to attempt to rewrite the righthand side

of the BNP system in terms of s rather than c. But this is not possible for

the problem as formulated in (3.21), because the righthand side lacks a critical

term involving cl (the term is buried in the unknown rl). Another approach, of

course, is to use a different algorithm. The preconditioned weighting algorithm

is one possibility, and a little algebra does allow us to rewrite the righthand side

of the PWgt system (3.47) in terms of a rather than c:

WTTW T [ rb = r -Wb. 51

But even this doesn't overcome the difficulty completely. We still need to con-

struct W1 as defined in (3.43), and this requires having G in a form suitable

for use in the interlacing scheme. We would like to produce an order-reducing

conjugate gradient algorithm which can solve saddle point problems in which

neither c nor G is readily available.

In this chapter we extend algorithm BNP to a class of methods capable of

dealing with each of these difficulties. Our approach is based on the classical

73



nullspace method, which makes use of a matrix N (the basis matrix) whose

columns form a basis for the nulispace of the equilibrium matrix. The technique

used in §4.3 to relate problem LSE to an unconstrained problem is a special case

of the nulispace method.

In §5.1 we describe the nullspace method, and show that algorithm BNP may

be viewed as a variation of this method for a certain distinguished choice of the

basis matrix. In BNP, however, the basis matrix is used but never explicitly

formed; thus algorithm BNP becomes an example of a class of methods we call

implicit nullspace methods. We describe in §5.2 a technique for producing

implicit nuUspace methods for other choices of the basis matrix, and outline

a general algorithm suitable for implementation. Then, in §5.3, we propose

specific examples of implicit nullspace methods, emphasizing ways to overcome

the difficulties described above. In the next chapter, we will report on experi-

ments with each of these methods, using test problems based on both the static

analysis of engineering structures and Stokes flow.

5.1 BNP as an Implicit Nulispace Method

The original derivation of algorithm BNP, reported in [4] and detailed in §3.1,

involves applying block elimination to the modified Kuhn-Tucker equations. In

this section, we derive the method in a new way, establishing a connection

betwea algorithm BNP and the classical nullspace method (see, for example,

(7], (31]). This nullspace characterization of BNP, first reported in James and

Plemnmons [20], leads to the extension we describe in §5.2.

We begin with a description of the nullspace method itself. Suppose we are

given a convenient particular solution yp to the constraint Eyt = b, and a

74



matrix N whose columns form a basis for the nullspace of E (for convenience,

we will call N a basis matrix). Then any vector satisfying the constraint can

be written as y = YP + Nz for some choice of z, and minimizing JIGy - C112

subject to the constraint amounts to minimizing I1G(yp + Nz) - c112 over all

possible z. The latter minimization is an unconstrained problem of order n-rmi.

Forming the associated normal equations confirms that the required z solves the

symmetric poitive definite system

NTGTGNx NTG2 (c - Gyp). (5.2)

Now let E be the upper trapezoidal matrix Et = [EL ER I given in (3.6).

Note that
[PEE'xb (5.3)

is a particular solution of the constraint Ey = b, and the columns of

N [ EEE] (5.4)N [_ I I

form a basis for the nullspace of E•. Now write the nullspace normal equations

(5.2) with these choices of the basis matrix and particular solution:

NaTGa'GNx = NTGT(c- ay,). (5.5)

Note that we can apply the conjugate gradient algorithm to these normal

equations without forming NI explicitly: an arbitrary matrix-vector product

involving NI requires only a triangular solve with EL, and a matrix-vector

product with ER. Thus, this approach to solving problem LSE is the simplest

possible example of what we call an implicit nullspace method, or INM: we

solve the nullspace normal equations using a distinguished choice of the basis

75



matrix N, but do not actual form this matrix. In the next section, we develop

a more general version of algorithm ILNM.

Now precondition in the standard way with G12, where G1 2 is the lower

righthand corner of the upper triangular matrix G as defined in (3.7):

Gjf2N,'GT GN1GI-w =GT'N'GT(c - Gy,), where w =6L 12X. (5.6)

Notice that this preconditioned set of normal equations is its.elf an example of

an implicit nulispace method: since N, is a basis matrix, so is NIB for any

non-singular B. Thus, the linear system (5.6) reflects N = NIG-2 as the choice

of basis matrix. In fact, we can say more about this system. The formidable

looking coefficient matrix simplifies nicely, and it will lead &ixectly to the BNP

system.

First recall the technique used in §3.1 for augmenting the trapezoidal matrix

E,. The matrix A, isdefined to be

A,=[EL ER] (5.7)

The inverse of this version of A, is given by

At = [BE' -EZý1EjGr2 ]
Aa=EL -EE'RG (5.8)

which in turn tells us that

A-1A = [ 1EERI G-21 = NtG-. (5.9)

Thus Y = A2Arj1 ? can be written

Y = G2Nza-. (5.10)

76



Now return to the normal equations given in (5.6). From equation (4.16) we

know that GI•Aj. = I. This,, combined with (5.10), gives us

GNIG1 2G ' [ ] AT'k = [ I].- (5.11)

Therefore, the coefficient matrix in (5.6) is I + YTY, which is precisely the

coefficient matrix in BNP.

While the BNP system (3.21) and the preconditioned nullspace system (5.6)

involve different unknowns and righthand sides, we can interpret the unknown

to in a way which completes the connection between the two methods. Partition

[ YL (5.12)

compatibly with the rows of NI, and use the fact that y = y;, + Nix to find that

z = YR. Thus, the defining equation to = Gj 3z can be written

to = 012YR = GUI. (5.13)

But rn = cl - Gly by the definition of rl. Thus we obtain a relationship between

the BNP unknown r, and the unknown tw in the nullspace normal equations:

wC = I - l. (5.14)

Use this fact to rewrite (5.6) as

(I + YTy)(c, - rl) =Ga NTGT(c - GY,). (5.15)

Finally, move cl to the right-hand side and simplify: the result is the BNP sys-

tem as given in (3.21). Thus algorithm BNP is essentially an implicit. nullspace

method, with N = NIG' as the (unformed) basis matrix. While we have shown

77



this only for the simple augmentation of the trapezoidal matrix Et, the conclu-

sion also holds when using interlacing to augment the stairstep matrix E..

The only significant distinction between the BNP system (3.21) and the

system in (5.15) is the fact that the two systems involve different unknowns

(and, of course, different righthand sides). In the next section, we will see

that this change in unknown is exactly what we need to produce an algorithm

suitable for saddle point problems.

5.2 Algorithm INM: General Case

In the last section, we began with a certain natural basis N = [E ER] for

the nullspace of the trapezoidal equilibrium matrix & and demonstrated that

algorithm BNP can be viewed as an implicit nullspace method with N = NG'1

as the basis matrix. We also observed that N = NB is a basis matrix for

any non-3ingular matrix B. The basic idea behind the extension of BNP

should now be clear: instead of using Gj'• as a preconditioner for the nullspace

normal equations given in (5.5), precondition (5.5) with any convenient non-

siagular (n-mi)x(n-m1 ) matrix B, producing an implicit nullspace method

with N = NB as the basis matrix. But so far we have only considered the

trapezoidal matrix E, obtained by column pivoting. To make this approach

practical, we would like to use interlacing to construct a basis matrix and par-

ticular solution for the stairstep matrix E..

Recalling equation (3.11), let P = [ PL PR I be a permutation matrix

relating the trapezoidal matrix El and the stairstep matrix E,:

&P EaPL E.PRII=E[ Er,. (5.16)

78



Now let M, be a matrix of size (n-mi)xn such that the matrix B& defined by

b= [ E, ] (5.17)

is non-singular, we will call such an M. an augmentation matrix. It is quite

easy to construct an M, with this property: use rows with leading non-zeros

in the (n-mi) columns in which the stairstep matrix E. does not have leading

non-zeros. Think of Mi as generalizing the role that G1 plays in BNP. In the

special case A = A, we would haveM1 = [0 M12 ], where M,, plays the

role of G12.

Finally, by analogy with A, in equation (3.10), apply interlacing to produce

an upper triangular matrix defined by

BA = Pi = P [ (1

We are now in a position to define the basis matrix N and the particular

solution Y,.

Theorem 5.1 The vector y, = Bj 1 P [ satisfiej the constraint E.y = b for

any choice of v.

Proof, Note that BO" - j=iTPT, where is defined in equation (5.17). Also,

by an argument similar to equation (4.16), we find that EBjT - [1 0 ]. Use

these two facts to establish the result:

which is b as required. 3

The choices v = 0 and v = c, are particularly convenient when using the

results of Theorem 5.1 to define y.; both are present naturally when initializing

quantities in advance of forming B1.

79



Theorem 5.2 The columns of.N = Bj1 Pq form a basis for the nullspace of

the stairstep matriz E.

Proof. N is the proper size and has full column rank, so we need only establish

that EN =0. Recall from the proof of Theorem 5.1 that BT' = fI*pT and

E.bEj 1 [ 0"AlsonotethatPTPR= I by orthogonality. So

EN=E.BT'PR=E.t-kPTPR=[I 01[0]

which is zero as required. 0

These two theorems give us what we need to describe the implicit nullspace

method in a general setting we implement the algorithm by applying the con-

jugate gradient method to the factored nullapace normal equations (5.2), with

N and yv, as above. Table 5.1 summarizes the algorithm. In the table, sh is the

conjugate gradient direction vector, and 4 N= Gr(c - Gyp) - NOGCGNz(k)

is the residual associated with the normal equations. The vector ql stores the

product of the coefficient matrix with the direction vector. We use a starting

vector of z(P) = 0 (which gives us y(0) = ys,), but an arbitrary starting vector

presents no difficulties.

Unlike BNP, algorithm INM is simple to modify for problems in saddle point

form (2.9): when c and G are not available, simply substitute 3 = -G T c in the

nulispace normal equations (5.2) to obtain the new righthand side

A = -#NT( + Fy,). (5.19)

Also note that it is easy to preserve the opportunities for block-based parallelism

discussed in §3.1: given a substructured problem, we need only construct Uf

s0



Table 5.1: Implicit Nullspace Method (General Case)

1. Use Gauss Elimination or orthogonal reduction on E and 6
to replace E with its stairstep form E..

2. Choose a convenient augmentation matrix M1. The interlacing
information (represented by the permutation matrix P below)
can be stored in a pointer vector.

4. Initialize:
(a0x() =

(b) do= pjlDTGT(C _ GBT' bo)

(c) 3o =do

5. For k = O, 1..., until d4 < tolerace:

(a) qh = PIBDT FB~TPR.S

(b) 01, -' ,,&,

(d)M+ = 4+, dj+, /d4'
(e) *+t = dk+l + Pk+I

6. Recovery = B-'(Pqz + bo) and exit.

81



so that it conforms to the substructuring to ensure that interlacing produces an

upper triangular matrix with the proper structure.

It remains to show that we can deal with problems in which G lacks full

column rank. We will deal with this topic in the next section, when we look at

specific choices of the augmentation matrix MI.

.5.3 Examples of Implicit Nullspace Methods

In this section, we propose some specific examples of implicit nullspace methods,

and discuss circumstances under which they might be appropriate. Each is based

on a natural choice of the augmentation matrix M1.

Algorithm INMI

The asmplest possible implicit nullspace method, which we call algorithm

INMI, involves augmenting the stairstep matrix E. with rows of the (scaed or

unsealed) identity matri 1. If, for example, the matrix E. has the pattcrt

(5.20)

then define
[1• 1 P(5.21)

After interlacing, we have

i
* *

1

A -- * * . (5.22)
* 2

82



If E. has substructured form, then so does B1, and triangular solves involving

B1 and BE may be done in parallel as described in §3.1. Moreover, these solves

can be coded to exploit the presence of rows of the identity.

A formal description of the INMI interlacing begins with a permutation

matrix P relating the stairstep form E. to the trapezoidal form Et. Given

R00=[E*PL E.PRI=[E& ERI=Eý (5.23)

as in (3.11), the naiatrix MA = P4 is precisely the augmentation matrix we seek.

With tlis choice of MJ, it is easy to show that the basis matrix N = B'jPR

reduces to N = PNI, where NZ is the fundamental basis matrix defined in

equation (5.4). Similarly, the particular solution y. = B-IP 0 is actu

ally _p=P[ EL0
6 ]0 , which is a row permutation of the particular solution

given in (5.3). Thus INMI is nothing but the implicit nullspace method in (5.5),

carreted for interlacing.

Algorithm INMI it one way to solve problems in which G is unavailable,

prohibitively dense, lc full column rank, or is otherwise unsuitable foil ipter-

lacing; in particular, INMi is capable of h&ndling saddle point problems. Bdt,

since we ignore all information in the matrix G when constructing the precon-

ditioner, there is good reason to expect little preconditioning effect beyond the

order reduction itself. This is in fact what we observed in our experiment5s (see

chapter 6).

Algorithm INMG

If G has full column rank and convenient structure, we can augment E. by

interlacing rows of G, exactly as we do in algorithm BNP. In fact, as shown

in the previous section, the resulting implicit nullspace method, which we call

83



algorithm INMG, has the same coefficient matrix as the BNP system. Of course,

as with BNP, algorithm INMG may fail if G lacks full column rank, since the

rows of G needed to augment E. may not be available.

The linear systems in BNP and INMG differ only in their unknowns and

righthand sides. Let z be the unknown coordinate vector in INMG (in §5.2 we

used w for other reasons). Then, by the analysis in the previous section, x is

related to the unknown r1 in BNP by

z = c - ri. (5.24)

Recall from §5.2 that the translated unknown in INMG gives us an important

advantage over algorithm BNP: unlike BNP, algorithm INMG can be used to

colve sddle point problems. We demonot.ate this on a Stokee problem in chap.

ter 6.

In the special case c = 0 (e.g. the structures application), the two unknowns

satisfy .x = -t, so the BNP and INMG systems differ only by a negative sign.

The stop criteria in the algorithms &1so have the same interpretation, so we

should expect the two algorithms to perform identically. In fact, INMG out-

performed BNP in all our experiment (see chapter 6); this is how we identified

the instabiliLy in the BNP recursion (3.34) defiaing the defect vP.

As with each of the methods we describe, there are opportunities to code

solves and matrix-vector products in INMG to expioit the special properties of

the preconditioner. In particular, depending on the structure of F and G, one

may want to use the fact that GBI'PR = I to compute the conjugate gradient

direction vector sk.

84



BII
0ee 1 B* =*

G L:1 *

Figure 5.1! Interlacing in Algorithm INMGI

Algorithm INMGI

WV have already observed several times that it' G lacks full column rank, we

may be unable to interlace rows of E. and G to produce an upper trianýular

matrix B1. In particular, if the" :s no row of E. with leading non-zero in

Wolumn j, then interlacing requiie the existence of a row of G with leading

non*zero in that column. Wb.•n G lack,, full column rank, such a row of G may

or may not exist.

There is, however, an obvious way to combine the techniques in algorithms

INMI and INMG to overcome this difficulty. One can use rows of G to augment

E, when such rows are available, and use rows of the identity matrix I when

there is no appropriate row in G. We call this approach algorithm INMGI.

Consider, for example, the matrices in figure 5.1. To produce B1 , the aug.

mentation matrix M1 requires rows with leading non-zeros in eah of columns

1, 3, and 6. There are rows of G with leading non-zeros in columns I and 6, so

we include these rows in MI. The remaining row of M, comes from the identity

85



matrix; after interlacing, B1 has the depicted form.

While this approach is successful in solving problems involving rank deficient

G, there is a potential problem: unless the non-zeros in all rows of M1 are of

roughly the same magnitude, the resulting basis matrix may have columns of

widely varying size, resulting in a badly conditioned coefficient matrix. Consider

a very simple example. Let E be of the form

[EEL EcE , (5.25)

where EL is upper triangular awd non-singular. Suppose there are no rows of G

with leading non-zeros in the columns associated with E0. Then form

EL EC ER1
BD = ]D (5.26)

where D is a diagonal matrix (a scaled version of the portion of I used ia

the augmentation), and G12 is again the lower righthand corner of G. We can

explicitly calculate the inverse of BE; from that, we obtain the basis matrix:

N = [CID-' C2 jj'], (5.27)

where C, and C2 are given by

c, c (5.28)
0

Assuming the non-zero elements of E are of roughly the same magnitude,

the non.zeros of C1 and C, are likely to be of order one. Thus, the conditioning

of the basis matrix depends on DT' and G`. If the non-zeros in one of these

matrices are of different magnitude than those in the other, the basis matrix

(and hence the nullspace normal equations) will probably be poorly conditioned.

86



We observed this phenonenon in our experiments: without scaling, conver-

gence of INMGI actually required more iterations than the size of the problem.

In our engineering test problems, however, the blocks of G were all of compa-

rable magnitude. Thus, we simply scaled G and c by a constant multiple of

the identity so that the non-zeros in G were 0(1). The results, reported in

chapter 6, were much more encouraging.

Algorithm INMF

We have already proposed one implicit nullspace method, algorithm INMI,

capable of solving problems in which the matrix G is either unavailable or

unsuitable for interlacing. Intuitively, though, this approach seems less than

promising, since we ignore all information in G when constructing the precon-

ditioner. Experiments reported in chapter 6 confirm that the preconditioner

produced by INMI is not effective at all.

There is, however, another way to approach the problem: we can use infor-

mation in F = GT G to construct the augmentation matrix. One possibility is

to generate a Cholesky factorization of a portion of F (for example, the block

diagonal portion), then use rows of this factorization to form MI. Another

option, as yet untested, is to use selected rows of an incomplete Cholesky

factorization of F (see the appendix for a brief description of such a factor-

ization). In both cases, the intent is that the factorization produces a G which

is at least a rough approximation of the matrix G.

While intuition suggests that this approach should produce a better pre-

conditioner than algorithm INMI, there is one potential problem with using

approximate factorizations of F to form MI. It is important to remember that

87



we are not using the entire factorization as a preconditioner; we are instead us-

ing only selected rows of what is already a crude approximation to G. This may

result in an augmentation matrix of little or no value. It is possible, perhaps

likely, that the cost of both producing the factorization and using the resulting

B1 within iterations may prove to be wasted effort. In fact, this is precisely

what we observe in one of the experiments described in the next chapter.

In chapter 6, we report on experiments with most of the methods described

here. We note, however, that there are other possibilities which remain untested.

One could, for example, use an incomplete orthogonal factorization of a

complicated matrix G to produce a simpler approximation 6 suitable for in-

terlacing (see appendix). Another possibility is what one might call a partial

orthogonal factorization of G: instead of reducing G completely, use orthog-

onal rotations on only a selected portion of G to produce a matrix a suitable for

interlacing. It is clear that the possibilities are endless: algorithm INM offers a

great deal of flexibility in constructing the preconditioner. What we have yet

to establish is whether any of the proposed algorithms efficiently solve problem

LSE in its various formulations.

88



6. Numerical Experiments

In this chapter, we report on the results of numerical experiments with the

iterative algorithms discussed in this thesis, including both the conjugate gradi-

ent methods (BNP, Pwgt, and various forms of INM) and the linear stationary

methods (2-cyclic SOR and 3-AOR). We compare and contrast the behavior of

the algorithms, and examine parallel performance on substructured problems.

Section 6.1 is a summary of the conditions under which we conducted the

tests. In §6.2, we consider three small models of elastic structures. Besides

providing us with an opportunity to validate the codes, these problems offer the

best means of studying the behavior of 2-SOR and 3.AOR. Then, in §6.3, we

consider the performance of the conjugate gradient methods on elastic problems

of more realistic size.

In the last two sections, we look carefully at the extensions to algorithm BNP

by considering problems for which BINP is not well suited. Section 6.4 descrises

models of structures with simulated •,•.-age," producing problems in which

the matrix G lacks full column rank. In §6.5 we consider the mark,'-.aad.cell

saddle point formulation of the Stokes prtblem.

89



6.1 Overview of Experiments

All experiments were run on a two-processor Alliant FX/40. We employed full

optimization, including vectorization, on all test problems, but we inhibited

vectorization within the codes when it was appropriate to do so. We also used

the DAS compiler option, allowing the compiler to assume that finite precision

arithmetic is associative. This gives the compiler the flexibility to rearrange

the order of computations, enhancing the opportunity for concurrent execution.

Occasionally, however, the DAS option causes the results for an experiment run

on two processors to differ slightly from those obtained on a single processor;

in particular, one sometimes observes minor differences in the total number of

iterations required to achieve a solution of a specified accuracy. To simplify the

tables, we report iteration counts only for the two processor case.

Execution times (in seconds), obtained using the Alliant atime intrinsic, in-

dude all operations except input/output (for the Stokes problems, this indudzs

the cost of generating the matrices). In all problems, however, only the iteration

times were significant: prprocessing, including factoring R and completing the

interlacing step, typically required only 1-2% of the cpu time.

For coavenience, we list the algorithms tested in our experiments:

BNP: order-reducing conjugate gradient method due to Barlow, Nichols, and

Plemmons (§3.2).

Pwgt: preconditioned weighting method (§3.3)..

2-SOIL optimal 2-cyclic successive over-relaxation apphed to the modified

Kuhn-Tucker equations (§3.3).

90



3-AOR:. optimal three-block accelerated over-relaxation applied to the modi-

fied Kuhn-Tucker equations (§3.3).

IN1I: implicit nullspace method in which the preconditioner is formed by

interlacing rows of E with rows of the identity matrix I (§5.3).

INMG: implicit nullspace method in which the preconditioner is formed by

interlacing rows of E with rows of G (§5.3); essentially equivalent to al-

gorithm BNP.

INMGL: implicit uullspace method in which the preconditioner is formed by

interlacing rows of E with rows of G when the appropriate rows of G are

available. When such rows are not available, rows of the identity matrix I

are used to complete the construction (§5.3).

INMF: implicit nullapace method in which the preconditioner is tormed by

interlacing rows of E with rows constructed in some way from information

in the matrix F (§5.3). In our tests on the Stokes problem, we use rows

from the Cholesky factor of the block diaoaal portion of F.

All programs were written in FORThAN7T using double precision arithmetic

and sparse, row-oriented data structurem Since we attempted to solve three

distinct types of problems (elastic structures, structures with rank deficient

bock in G, and Stokes flow), we coded as many as three versions of a given

algorithm. For each type of problem, we desived the codes so that the data

structures, logic, and primary subroutinea (especially the factarization of E, the

triangular oves, and matti.vector multiplications) were as similar as possible

fivn wne algoritm to 4z . We did, of curse, try tot ake advantage of

91



special features of each algorithm. Thus, for example, the codes for algorithm

INMI accomplish triangular solves involving B1 by exploiting the fact that B1

contains rows of the identity matrix.

We did not write special codes for algorithm INMG. Instead, we used the

INMGI codes to run algorithm INMG on full rank problems (algorithm INMGI

is equivalent to INMG in this case, since the rows of G needed for interlacing

are always available). The logic and data structures in INMGI are somewhat

more complex than for the other algorithms, since the code must be able to

identify and deal with column rank deficiencies in G. Thus, the times reported

for algorithm INMG are slightly slower than they would be had we written code

specifically designed for full rank problems.

We decided that the fairest, moat meaningful way to compare the algorithms

was to report the times required to produce a result of specified accuracy. There.

fore, for each problem we constructed a "true' solution (by means described

in e4ch section), and adjusted the stop tolerance for each algorithm until the

reported error (in the infinity norm) was as close as possible to a specaied accu-

racy. We used the standard stop criterion for all conjugate gradient methods: if

the algorithm solves the symmetric positive definite system Kz = f, terminate

execution when the quantity [if - Kz:(h)[} is less than the specified tolerance

(this quantity occurs naturally within each iteration). For the linear stationary

methods, we terminated execution when the change in succes3ive iterates was

smaller .han the specified tolerance.

In the preconditioned weighting algorithm, we experimented with the value

of the weighting parameter r to obtain the best posble results. In all cases, the

best choice of r was between iO and 1IT, with little difference in performance

92



as r vaied over this range. This is consistent with the theory in Barlow [2].

We also report that we have have run the codes on several other architec-

tures, including the Cray Y-MP, the Alliant FX/8, and Sun 3/50 workstations.

We have only anecdotal results on these machines, and did not attempt to opti-

mize the ported codes. Therefore, we include here only results for experiments

on the FX/40.

6.2 Small Full-Rank Structures Problems

The three small test problems described in this section are all models of elastic

structures (see §2.2). The resulting constrained minimization problems involve

a symmetric positive definite matrix F which is block diagonal. Thus, the

corresponding Cholesky factor G is square, of full rank, and block diagonal

with upper triangular blocks. We used these problems as a means of validating

our codes, but they also gave us , chance to compare the linear stationary

methods (2-SOR and 3-AOR) against the conjugate gradient alorithms (BNP,

INMG, INMI, and Pwgt).

Problem WRENCH4 (figure 6. 1a) is a subatructured versio of a test prob-

lem due to Lawo (61. It consists of 48 planar elements, and produ(.s a problem

with 112 constraints and 216 unknowns. The diagonal blocks in the element

flexibility matrix are 5x5 tor the rectaagular elements, and 3US for the tri-

angular elements. The applied force ia indicated by the arrows in the figure.

We partitioned the structure into four substructures as shown in the figure; the

resulting transition zone has 50 columns.

Problem DAM2 (figure 6.1b) is a trapezoidal region intended to be a rough

approximatioa of a cross-sectioa of a dam, modelled using square and triangular

93



(a) WRENCH4

(c) SOUDi

(b) DAM2

Figure 6.1: Models for Small Full.Rank Problems

planar eled nts as described in PJ•zeaeviedd t3321. Like WRIMCFI4, the block.

in F are 5x5 for the rectangular elements, and 3x3 for the tangular elements.

The external load simulatesa body of water against the left vertical wall. The

model produces a problem with 104 constraints and 244 unknowns. There are

two substructure as shown in the figure the resulting transitioa zone has 33

columns.

Problem SOLIDI (figure 6.1c), also modelled using techniques in [32J, ap.

pro a building subjected to the force of a steady wind approaching oae

of its vertical edge& This vessiom wassts of 60 sol.d tetrahedi elements (five

tetrahedrons in each small cube), and produce a problem with 81 constraints

and 360 uaknowns. Each of the 60 blocks in the block diagonal matrix F is

6x6. Again there are two substructures. The resultin transition zone is quite

large, consisting of 120 out of 360 columns.

In practice, these problems are all too small to justify substructuring tech-

94



niques; the transition zones are far too large, and the substructures themselves

are not well balanced. We constructed substructured versions of the small prob-

lems primarily to validate the codes. Note that we deliberately chose partition-

ings which produced at least one unstable substructure (see §2.4) so that there

would be diagonal blocks in E which were deficient in row rank. In all three

problems, we could have chosen natural partitionings which produce stable, full

rank substructures.

To measure error, we obtained the 'true" solution to each problem by solv-

ing the original Kuhn-Tucker equations (2.6) using LINPACK [8]. We then

adjusted the etop tolerances for each algorithm so that the infinity norm of the

reported error was roughly 10-4. We summarize the results of the experiments

in table 6.1.

The results for SOR and AOR ame for the approxinata optimal values of

the iterai puameters (obtained experimentally). We report that AOR is

highly scaltive to the choice of the parameters: very small deviations from

the optimal values result in either divergence or a drastic reduction iu the rate

of convergence. In all three test problems, the region of convergence in the

w--P plane appears to be a tiny, narrow crescent-shaped region. The choice

of parameter in 2-cyclic SOR is consstent with the theory (see (41 and [24J):

omvergence occurs for all w below a sufficiently small critical value, with the

optimal choice occurring very close to that critical value. It is clear from the

tables that these test problems do not satisfy the conditions in Papadopoulou,

Sazidakisd and Papatheodorou [28), since 2-SOR outperfrs 3AOR by a wide

margin. Moreover, for each of these problems, all of the conjugate gradient

algorithm proved vastly superiom to the linear statioaary methods.

95



Table 6.1: Numerical Results: Small Full-Rank Structures Problems

WRENCH4
(216 unknowns, 112 constraints)

BNP INMG PWgt INMI 2-SOR 3-AOR
Iterations- 33 33 34 40 457 2439
2 proc time .345 .352 .343 .355 3.58 19.0

1 proc time .535 .550 .522 .618 5.75 30.7
Speedup 1.55 1.56 1.52 1.74 1.61 1.62

DAM2
(244 unknowns, 104 corstraints)

BNP INMG PWgt INMI 2-SO. 3-AOR
Iterations* 52 1 49 51 1 78 818 5991
2 proc time .595 .609 .571 .791 8.24 60.8
1 proc time .899 .911 .852 1.30 T 12.4 91.7

Speedup 1.51 1.50 1.49 1.64 1.50 1.51

SOLIDI
(360 unknowns, 81 constraints)

BNP INMG PWg INMI 2-SOR 3-AOR
SIterations* 41 I41 i 42 ! 88 208 I609
2 proc timel .735 .773 .721J 1.32 3.32 [,9.56

|1 proc time I. !58- IT -,13 1 .°6! 2.06 4.81 1 4.0.
Speedup 1.47 1.46 1 .47 1 1.56 1.45 1.46

*Minor differences occaoaalo y occur when changing number
of processors. Statistics are for two-processor runs.

96



Algorithms BNP, INMG, and PWgt all perfornied comparably on these prob-

lems. This is as expected: BNP and INMG are solving the same linear system

(§5.3), and both BNP and INMG arm esseutially the limiting case of PWgt

(§4.3). In the next section, however, we will observe that these algorithms

behave differently on larger test problems.

Note that INMI performed measurably slower than the other conjugate gra-

dient algorithms, especially on ihe three-dimensional problem SOLIDI. This

is consistent with our expectations: while INMI is an order-reducing method,

the algorithm ignoies all information in the matrix G when constructing the

preconditioner.

On all problems, sp1edups are quite reasonable given the large transition

I- and -imbalances ia the substructures. They are also consistent across the

algorithms; this reflects the fact that the principal subroutines are similar in

each of the codes.

6.3 Larger Full-Rank Structures Problems

Having validated the codes on the small test problems described in the previous

section, we then experimented with larger elastic structures problems; wo report

the results of those tests here. Because of the poor performance of 2-SOR and

3-AOR ov the small test problems, and the difficulty of determining appropriate

iteration parameters for these algorithms, we did not test the linear stationary

methods on this set of problems.

Problem DAMIO (figure 6.2a) is similar to DAM2 (see §6.2), except that

there are mort elements in the model. There are 1,220 planar elements, pro-

ducing a problem with 2,440 constraints and 6,020 unknowns. We consider two

97



(a) DAM10 (b) SOLID2

Figure 6.2: Models for Large Full-Rank Problems

versions of the problem: one involving no substructuring of the physical domain,

and another with two substructures of iairly equal size (and 178 columns in the

transition zone). Again, we deliberately chose a transition zone consisting of

a horizontal strip through the domain (see the figure), so that the upper sulb-

structure would be unstable, and one of the diagonal blocks in the equilibrium

matrix wovld lack full row rank.

Problem SOLID2 (figure 6.2b) is similar to SOLD 1 (see §6.2), except that

the rectangular solid is very tall, and there are more elements in the model.

There are 220 free nodes and 660 tetrahedral elements in this model, producing

a problem with 660 constraints and 3,960 unknowns. As with DAMIO, we

consider one version with no substructuring, and a second version with two

substructures. Even though the matrices are fairly large for this problem, the

geometry of the model does not allow a small transition zone: there arm 360

transition columns, which i3 almost 10% of the total number of columns in the

equilibrium matrix.

98



As with the problems in the previous section, we compared the solutions

produced by each algorithm to a reference vector assumed to be the "true" so-

lution. This time, however,, the problems were too large to obtain a solution

using LINPACK on the Kuhn-Tucker equations. Since all algorithms produced

results consistent with the LINPACK solutions on the smaller versions of the

structures problems, we felt confident that the codes were working correctly.

Therefore, we solved each problem using algorithm INMG with a stop tolerance

of C = 10-10, and used the resulting solution as the "true" solution when com-

puting errors. We then adjusted the stop tolerances on each algorithm so the

reT-"rted error (in the infinity norm) was roughly 2x10-4.

We summarize the results of the experiments in table 6.2. Perhaps the

nr-A". interestins difference between these results and those in table 6.1 concerns

the relative performanve of BNP and INMG. Despite the fact that the two

methods sol'-e tht same linear system in essentially the same way, algorithm

INMG is supenior, especially on DAM# 0. Here we see clearly for the first time

that the method used to calculate the defect in algorithm BNP is unstable: it

causes inaccuracies in the tirtrtion vectors and scale factors, resulting iL slower

convergence (see §3.2). If we replact the non-standard calculation of the defect

with the more ,onventional update based or. explicit use of a direction vector

and scale factor, the resuli- for BNP coincide aimost exactly with INMG. In

this case, the two codes we 1Pr.-for-fine virtually identical; the maj.zr difference

is the fact ýhat algorith. BNP updates the original unknown y at each iteration,

whiLe INMG recovers y after iteratiozs cease (§5.3).

If we think of algoritbm INMG as an improved version of BNP, the results

for PWgt make sense. Since BNP (and therefore INMG) is the limiting case

99



Table 6.2: Numerical Results: Large Full-Rank Structures Problems

DAM10
(6,020 unknowns, 2,440 constraints)

Two Substructures:

BNP INMG PWgt INMI
Iterations' 11481 910 I 955 I 1416
2proctime 282. 227. 232. 355.
1 proc time 483. 38. 399. I 603

Speedup L1.71 1.70I 1.72 1.70

No Substructurlng:

BNP INMG PWgt INMI
Iterations 9371782. J 830 11391lproctime HJ 354. 1 304. 3120. 444.'

SOLID2

(3,960 unknowns, 660 constriants)

Two Substructures:

BNP INMG PWgt INMI
Iteration?* 23112231 22 W8

[2proc time 64.2 63.3 62.1 191.
1 proc time 186.41 FT.5 = 87.3 277.

No Subatructuriag:

BNP INMG PWgt INMI
iteratioj 1453 , 429 4,32I 1146 I

,1proe timeg 114.,] 112. 1 03. 2'91

"Minor differences occasionally occur when changing number
of processor. Statistics are for two-processor runs.

100



of the preconditioned weighting algorithm, it is only logical that the results for

INMG are slightly better than those for PWgt. Because BNP in its original form

is converging more slowly than it ought to (see previous paragraph), algorithm

PWgt outperforms BNP on both problems.

Comparing the results with and without substructuring is also quite inter-

esting: the problems change character completely when one changes the parti-

tioning of the physical domain. For DAM10, convergence is significantly better

without substructuring, while for SOLID2, it it significantly better with two

substructures. On both problems, however, the results with two substructures

on two processors are superior to those obtained with one processor on one

substructure. Speedups (comparing substructured results on one versus two

processors) were not as good as we would have liked, but clearly reflect the

size of the transition zone: tests on SOLID2, which has a large transition zone,

exhibit significantly poorer parallel performance.

Once again, INMI performed badly. This was true even when we experi-

mented with various types of scaling. It is quite clear that one cannot afford to

ignore the matrix G in constructing a preconditioner for an implicit nullspace

method.

6.4 Rank-Deficient Structures Problems

To test our ability to solve problem LSE when the matrix G lacks full column

rank, we modified the problems described in the previous section to simulate the

presence of "damaged" elements. We did this by defining a "damaged" region

in each model, and setting Poisson's ratio Y to the appropriate critical value for

each element in the region (see §2.2). The associated blocks of the matrix F

101



*damaged' areas

(a) DAM1OD (b) SOLID2D

Figure 6.3: Models for Rank Deficient Problems

are then non-negative definite and singular, so the corresponding blocks in the

generalized Cholesky factor F are rank deficient. The modified regions in each

problem are small enough to ensure that hypothesis H2 (§2.1) is still satisfied,

so the problems remain well posed.

For the reasons described in chapter 5, interlacing with rows of G fails for

these problems. Thus, algorithm BNP and Pwgt, at least as we have imple-

mented them, cannot be used. The same is true of algorithm INMG, which is

essentially an improved version of BNP. We are left with algorithms INMCI

and INMI.

Problem DAMlOD (figure 6.3a) is a modified version of DAM10 (see §6.3);

there are 2,440 constraints und 6,020 unknowns. The modified region (the dark

area in the figure), consists of 100 elements, or 8% of the total area of the model.

The corresponding blocks in F and G are 5x5 with rank 4. Thus the rank of G

is 5,920; this is 100 short of the total number of columns in G. Despite a rank

102



deficiency of 100, only 10 rows of the scaled identity m::.trix were needed by the

INMGI to produce an upper triangular matrix B1.

Problem SOLID2D (figure 6.3b) is a modified version of SOLID2 (see §6.3);

there ere 660 constraints and 3,960 unknowns. The modified region (the dark

area in the figure), consists of 20 elements, or 3% of the total volume of the

model. The corresponding blocks in F and G are 6x6 with rank 5. Thus

the rank of G is 3,940; this is 20 short of the total number of columns in G.

Algorithm INMGI required 12 rows of the scaled identity matrix to complete

the construction of B1.

Once again, these problems are too large to obtain a solution by using LIN-

PACK on the Kuhn-Tucker equations. We obtained solutions consistent with

the LINPACK solutions on smaller versions of these problems, so we felt confi-

dent that the codes were working correctly. Therefore, we solved each problem

using algorithm INMGI with a stop tolerance of e = 10-e, and used the resulting

solution as the 4 truel solution when computing errors. We then adjusted the

stop tolerances on each algorithm so the reported error (in the infinity norm)

was roughly l0-.

Table 6.3 is a summary of the results for these test problems. While both

INMGI and INMI successfully solve the problems, algorithm INMGI is clewrly

superior. Algorithm INMGI uses as much information as possible from the

matrix G. In both problems, very few rows of the identity matrix are needed

to form BI, so algorithm INMGI is "almost" INMG for these problems. We do,

however, note that it is necessary to scale the matrices as described in §5.3 to

"achieve these results: when the rows of G are not 0(1) (or, equivalently, if we

do not scale the identity matrix before using it for interlacing), the performance

103



Table 6.3: Numerical Results: Rank Deficient Structures Problems

DAM19t)
6,020 unknowiw, 2,440 rconstraint3

Rank of G: 5,920

Two Suibstmdcures:

INMGI INMI
ter~atlion?'. 164 2380

[2 yw*c time 410 46f9L
I pro time 715. 1020.

(3,960 unknoww, WO wostrainta)
Rmak of G-T 3,940

Two Subslma~ura:

Iltrat.orP-2. 618021

ONlinor Mfermnces occuioaiily otcur whta changing niumber
of prx~~eumr. Statusikat for t Iwo-proce~w r ps.

104



is INMGI is unacceptable.

6.5 Stokes Flow

To test our ability to solve saddle point problems, we experimented with the

marker-and-cell formulation of Stokes flow on the unit square (§2.3). As men-

.ioned in chapter 4, 4aogdthm ONP cannot be used to solve this problem. Al-

gorithia INMG, wkiich is the nullspace version of BNP, can deal with it easily.

We can also use Pwgt, INMI, and any of several versions of algorithm INMF.

To test algorithm INMF, wt used selected rows of the Cholesky factor of the

block diagonal pxt of F to augment the equilibrium matrix. Recalinug from

M2.3 that the die-gonal blocks of F are tridiagonal, this means the code used

.elected rows of the Cholesky factor of the tridiagonal part of F to form the

augmentation matrix. We did not form F explicitly in any of the codes; the

subroutine which computes the mattrix-vector product F: in INMG, INMF, and

INMI uses the stencil defining the action of F on an arbitrary vector (again, see

12.3). This routine is quite fast, and eoplains the fact that the time required for

euh iteration of these algorithms is about half that required for an iteration of

Pwgt.

We tested both a 50x50 grid (resuting in & problem with 2,499 preasure coa-

straints and 4,900 unknown velocity components), and a 100x 100 grid (9,999

prssmure constraints and 19,800 unknowns). We ran each problem with and

without substructuringt there were two sub-domains in the substructured ver-

sions. Algodthms INMG and PWgt, which remuire that the matrix G reflect the

substructuring, employ the wide transition zone described in §94. Algorithms

JLNMI and INMF do not use G; we th&e ore utsed the narrow transition zone

105



described in that section. In both cases, the transition zone constitutes a small

percentage of the columns of E.

We used the following artificial "flow" as our test problem:

v = 2zcosy

V =2 -zTsiny

2

Here v, and v2 are the horizontal and vertical components of the (continuous)

velocity vector, and p represents pressure. The velocity has non-zero divergence,

but is irrotational (curl v = 0). In fairness, we report that we have been unable

to use our codes to solve for rotational flows: on several problems involving

non-zero curl, we obtained errors (based on the true continuous solution) on

the order of 2x10"3 regardless of the specified mesh. We have not been able to

determine the cause of this behavior.

We used the continuous solution as given above to measure the error ob-

tained by each algorithm. We varied the stop tolerances for each algorithm to

determine the smallest attainable e=rr on the given grid, and then ran the tests

of eawh algorithm with the largest stop tolerance which produced this error. For

the S)x50 grid, the smallest attainable error (measured in the infinity norm)

was roughly 6x 10- for all algorithms; for the 100x 100 grid, the bes, attain-

able error was roughly 3x 10-s. Thus, the discretization appears to be an O(h)

global approximation to the continuous problem.

Table 6.4 summarizes the results of the experiments. We observe that the

t--diagonal portion of F produces a poor preconditioner in INMF. It seems we

cannot afford to ignore the information in the outer bands of F when construct-

106



Table 6.4: Numerical Results: Stokes Flow on Unit Square

50x50 Grid
(4,900 unknowns, 2,499 constraints)

Two Substructures:

INMG PWgt INMI INMF
Iterations II 354 1 433 1601 1637
2proc time 69.4 85.6i 127. 157.
1 proc time 127. 157. 224. 1 283.

I Spg dup 1 1.83 1.83 l 1.76 1.80

No Substcturing:

INMG PWgt INMI INMF
I terations H164- 1~ 23 I1b3 1 166881lI-protimeg 26.1 1 I-85-2 1,214.__I__22.- 1

lOOx100 Grid
(19,o8 unknwnv, 9,999 constaints)

Two Substructures:

, NMG PWgt 1NMI INMF

I terationo 1f385 1 13701 97214 83523

2 proc time 246. 818•20 49. 593.

of processors. Staiatici ae for two-pWoc1sor runs.

107



ing the preconditioner, especially when we are only using selected rows of the

factorization we obtain. INMI also performs poorly, as it did on all other test

problems.

Algorithm INMG, on the other hand, performs fairly well; the natural factor

G of the Laplacian matrix F (see §2.3) allows us to take advantage of some

outer band information in constructing the preconditioner. The difference in

iterations between INMG and PWgt is greater here than it is for any other

class of problems; the substantial difference in total time is due to INMG's

efficient matrix-vector multiplier (based on the stencil defining F).

Notice we obtain quite reasonable speedups on the Stokes problem: the

transition zones are fairly small, and the subdomains have virtually identical

structure. On the other hand, the results for INMG without domain decom-

position reflect an extraordinary reduction in the number of iterations. The

change in the rate of convergence is so dramatic that the time required to solve

the problem on one processor without domain decomposition is almost half that

needed for the substructured problem on two procemom Clearly one would need

a more sophisticated approach to constructing M, to overcome the penalty as-

sociated with domain decompostion applied to the Stokes problem. Incomplete

Cholesky decompoitions offer oat possibility worth exploring.

We note that we made no attempt to expm t the underlying continuous

problem to constrict a plausible starting vector for the iterations. We were

interested in the discretized Stokes problem only as an example of a linear

system in saddle point form. The expeiments indicate that we have in fact

succeded in extending BNP to a class of algoithms capable of solving such

syste-s.

108



7. Conclusions

The analysis and experiments described in this thesis hardly constitute an ex-

haustive study of the subject at hand. But the work does seem to make a con-

vincing case that algorithm BNP in particular, and order-reducing conjugate

gradient methods in general, offer a promising alternative to existing methods

for solving large, sparse constrained minimization problems.

The proofa that algoithm BNP is superior to p-cydic SOR (4] and block

AOR (chapter 4) hold only in exat arithmetic. But the tesults are decisive

for the test problems we have considered: even the poorest implicit nullsce

method proved faster than optinud 2-SOR and 3-AOR by a wida margin. Addi-

tionally, order-reducing conjugate gradient methods free the user of the burden

of chosq iteration parajmetem. It is quite diffiadt to determine the optimal

parameter(s) in bot4 Dtyclic SOR and block AOR. In the case of 3-AOR, it

may be hard to select parameters for which the 4gorithm even monverges. If

anythi4, the experiments may undrstate the advantage of the conjugate gra-

dient methods, since production odes would normally need to determine the

SOR and AOR parametem adaptively.

By establishing that algorithm BNP is the limiting case of the pre-coaditioned

weighting method, we have shown that BNP is competitive with yet another

approach to solving problem LS, Again, the experimental evidence supports

109



the analysis. For etxcl of the problems we considered, algorithm INMG, which

is essentially an improved version of BNP, achieved performance comparable to

(and generally faster than) preconditioned weighting.

Perhaps the most encouraging aspect of this work is the characterization

of algorithm BNP' as a nullspace method, and the resulting extension to more

general implicit nullspace methods. We obtain a class of methods capable of

solving problems for which algorithm BNP does not appear to be well suited,

including saddle point problems, and problems in which G lacks full column

rank. Moreover, for problems reflecting a substructuring of the physical domain,

implicit nulispace methods offer opportunities for parallel computation.

In addressing the question of how to construct an augmentation matrix which

leads to an effective implicit nulispace method, we have merely scratched the

surface: of the methods we have tested, only those which depend heavily on rows

of G (algorithms INMG and INMGI) show potential as truly robust algorithms.

But flexibility in the choice of the augmentation matrix M, appears to be the

greatest strength of the approach we describe. We strongly believe that further

research on more effictive ways to generate the augmentation matrix will prove

fruitful.

110



8. References

[1] J. Batt and S. Ge~lin, Rapid Reanalysis by the Force Method, Comp.
Meth. in App. Mech. and Eng., 53 (1985), pp. 105-117.

[2] J. Barlow, Error analysis and aspects of deferred correction for equality
constrained least squares problems, SIAM J. Numer. Anal., 25 (1988),
pp. 1340-1358.

[3] - , private communication, December, 1989.

[41 J. Barlow, N. Nichols and IL Plemmons, Iterative methods for equality con-
strained least squares problems, SIAM J. Sci. Statist. Comp., 9 (1988),
pp. 892-906.

(5] -- , Iterative methods for equality constrained least squares problems, In-
ternal Report CS-87-04, Dept. of Computer Science, enasylvania State
University, January, 1987.

[6] M. Berry, M. Heath, I. 1'•aneko, M. Lawo, IR Plemmons and R. Ward, An
Algorithm to Compute a Sparse Basis of the Null Space, Numer. Math.,
47 (1985), pp. 483-504.

(7] A. Bjorck, Least Squares Methods, in Handbook for Numerical
Methods, ed. by P.Ciarlet and J. Lions, Elsevier/North Holland Vol. 1,
1989.

[8] J. Dongarra, J. Bunch, C. Moler and G. Stewart, LINPACK Users'
Guide, SIAM, Philadelphia, PA, 1979.

[9] I. Duff, R. Grimes, J. Lewis, Users' Guide for the Harwell-Boeing Sparse
Matrix Collection, manuscript, Boeing Computer Services, Seattle, WA,
1988.

[10] M. Eiermann, W. Niethammer and A. Ruttan, Optimal successive overre-
laation iterative methods for p-cyclic matrices, Numer. Math., to ap-
peu.

[11] 1L Freund, A note on two block-SOR methods for sparse least squares prob-
lems, Lin. Alg. and Applic., 88-89 (1987), pp. 211-221.

[12] G. Golub and C. van Loan Matrix Computations, Johns Hopkins Uni.
versity Press, Baltimore, RD, 1983.

111



[13] A. Hadjidimos, Accelerated overrelazation method, Math. Comp., 32
(1978), pp. 149-157.

[14] L. Hageman and D. Young, Applied Iterative Methods, Academic
Press, New York, NY, 1981.

[15] C. Hall, Numerical solution of Navier-Stokes problems by the dual variable
method, SIAM J. Alg. Disc. Meth., 6 (1985), pp. 220-236.

[16] F. Harlow and F. Welch, Numerical calculations of time dependent viscous
incompressible flow of fluid with a free surface, Phys. Fluids, 8 (1965).

[17] M. Heath, R. Plemmons and R. Ward, Sparse Orthogonal Schemes for
Structural Optimization Using the Force Method, SIAM J. Sci. Statist.
Comp., 5 (1984), pp. 514-532.

[18] D. James, Implicit Nullapace Iterative Methods for Constrained Least
Squares Problems, submitted to SIAM J. Sci. Statist. Comp, Dec. 1989.

[19] - , Order-Reducing Conjugate Gradients versus Block AOR for Con-
strained Least Squares Problems, Lin. Alg. and Applic., to appear, 1990.

[20] D. James and R. Plemmons, An Iterative Substructuring Algorithm for
Equilibrium Equations, Numer. Math., to appear, 1990.

[21] A. Jennings and M. Ajiz, Incomplete Methods for Solving ATAz = b,
SIAM J. Sci. Statist. Comp., 5 (1984), pp. 978-987.

[22] D. Kershaw, The incomplete Choleski-conjugate gradient method for itera-
tive solution of systems of linear equations, J. Comp. Phys., 26 (1978),
pp. 42-65.

[23] T. Manteuffel, Shifted Incomplete Cholesky Factorization, in Sparse Ma-
trix Proceedings 1978, I. Duff and G. Stewart, eds., SIAM, Philadelphia,
PA, 1979.

[24] T. Markham, M. Neumann, and R. Plemmons, Convergence of a direct-
iterative method for large scale least squares problems, Lin. Alg. and Ap-
plic., 69 (1985), pp. 155-167.

[25] J. Meijerink and H. van der Vorst, An Iterative Solution Method for Linear
Systems of Which the Coefficient Matrix is a Symmetric M-Matriz, Math.
Comp., 31 (1977), pp. 148-162.

[26] J. Ortega, Introduction to Parallel and Vector Solution of Linear
Systems, Plenum Press, New York, NY, 1988.

[27] J. Ortega and R.Voigt, Solution of Partial Differential Equations on Vector
and Parallel Computers, SIAM Review, 27 (1985), pp. 149-240.

(28] E. Papadopoulou, Y. Saridakis and T. Papatheodorou, Block AOR Itera-
tive Schemes for Large-Scale Least-Squares Prollems, SIAM J. Numer.
Anal., 26 (1989), pp. 637-660.

112



[29] D. Pierce., A. Hadjidimos and R. Plemmons, Optimality relationships for
P-cclic SOB, Numer. Math., 56 (1990), pp. 35-643.

[30] FP. Plemmons, A Parallel Block Iterative Scheme Applied to Computations
in Structural Analysis, SIAM J. Alg. Disc. Meth., 7 (1986), pp. 337-
347.

[31] 1R. Plemmons and R. White, Subotructuring methods for computing the
nullspace of equilibrium matrices, SIAM J. on Matrix Anal. and Ap-
plic., 11 (1990), pp. 1-22.

[32] J. Przernieniecki, Theory of Matrix Structural Analysis, Dover Pub-
lications, Inc, 1985.

[33] Y. Saad, Preconditioning techniques for nons•mmetric indefinite linear sys-
tems, J. Comp. App. Math., 24 (1988), pp. 89-105.

[34] G. Strang, A framework for equilibrium euations, SIAM Review,
30 (1988), pp. 283-297.

[351 - , Introduction to Applied Mathematics, Wellesley Cambridge
Press, Wellesley, MA, 1986.

[36] 1t. Varga, p-cyclic matrices: a generalization of the Young-Frankel succes-
sive overrelazation scheme, Pacific J. Math., 9 (1959), pp. 617-623.

[37] - , Matrix Iterative analysis, Prentice-HaHI, Englewood Cliffs, NJ,1963.

[38] D. Young, Iterative Solution of Large Linear Systems, Academic
Press, New York, NY, 1971.

[39] - , Iterative methods for solving partial differential equations of elliptic
type, Trans. Amer. Math. Soc., 76 (1954), pp. 92-111.

(40] Z. Zlatev and H. Nielsen, Solving large and sparse linear least-squares prob-
lecm by conjugate gradient algoritms, Comput. Math. Appl., 15 (1988),
pp. 185-202.

113



9. Appendix: The Breakdown of
Incomplete QR Factorizations

The research which led to this dissertation began with a look at incomplete QR

preconditioners for ordinary least squares problems. We quickly developed an

interest in order-reducing conjugate gradients for constrained problems, leaving

unfinished the work on incomplete QR factorizations. Before this change in

direction, however, we encountered some simple examples of a mechanism which

can cause incomplete QR factorizations to break down. We felt these examples

were interesting enough to deserve a separate discussion; we include them in

this appendix. The notation throughout the appendix is independent of the

preceding chapters.

9.1 Preconditioning with Incomplete Factor-
izations

We consider the following ordinary least squares problem: given an mx n matrix

A with fudl column rank, and an m x 1 vector b,

m mize IIAx - b112. (9.1)

The unique solution x satisfies the so-called normal equations:

ATAx = A7b. (9.2)

114



Notice that the coefficient matrix ATA is symmetric positive definite when A

has full column rank.

There are, however, a number of well-known difficulties associated with using

the normal equations (see, for example, Bjorck [7] or Golub and van Loan [12]).

These include the conditioning of the problem (the spectral condition number

of ATA is the square of the condition number of A itself), and the 0(n 3) cost

Lnd loss of information associated with forming ATA. We can avoid some of

these problems by leaving the normal equations in factored form and solving the

problem iteratively (using, for example, a conjugate gradient algorithm). But

convergence of the conjugate gradient algorithm still depends on the condition

number of ATA, so we generally need to precondition the normal equations to

have any hope of producing an effective algorithm.

Now suppose we have an orthogonal factorization of A given by A = QR,

where the matrix Q is orthogonal, and R is upper triangular. Recall that

RTR = ATA; in fact, R is (up to changes in the signs of the rows) precisely the

Cholesky factor of ATA. Given such a factorization, we could "precondition"

the normal equations:

R-TATAR-'w = R .TATb, where w = Rxc. (9.3)

But AR-1 = Q, and QTQ = I, so this reduces to w = R'TATb.

Of course, there is no need to iterate on such a trivial system; we have in

fact described a way to use a QR factorization to solve a least squares problem

directly. But if we did apply a conjugate gradient algorithm, we'd achieve "con-

vergence" in one iteration. Thus, in a sense, the Cholesky factor of ATA is the

"perfect" preconditioner, and the thought experiment motivates an approach to

115



preconditioning the normal equations (9.2). Let A be some non-singular upper

triangular matrix which is in some sense a rough approximation of the Cholesky

factor R of ATA. We are tempted to ask whether A may be a g,,od precon-

ditioner for the normal equations: perhaps ARA-1 is "roughly" orthogonal, and

the matrix R-..TARTA-1 is a crude approximation of the identity matrix I. If

so, then the preconditioned system

A"TATA-_16 = A.-TATb where - A Xz (9.4)

ought to be well-suited for the conjugate gradient algorithm.

9.2 A Strategy for Incomplete QR

One way to form the matrix A is to use a so-called incomplete Cholesky

factorization (see, for example, Meijerink and van der Vorst [25], or Ortega

[26]). Such factorizations compute a conventional Cholesky factorization of a

symmetric positive definite matrix, but retain only selected non-zeros as the

factorization proceeds. One could use a strategy based on the size of the non-

zeros, keeping only elements larger than some fixed or varying drop tolerance.

Alternatively, one might instead employ a method based on the position of the

non-zeros; here, one selects a predetermined non-zero pattern for the approx-

imate Cholesky factor A, preserving only those non-zeros which conform to

the selected pattern. More sophisticated approaches, including combinations of

these methods, are of course possible (see, for example, Manteuffel [23] for an

algorithm which includes a shifting of the coefficient matrix).

The incomplete Cholesky factorization is certainly a promising approach to

preconditioning symmetric positive definite systems when the coefficient matrix

116



is already explicitly available. For problems involving normal equations, though,

we generally want to avoid forming ATA. For that reason, we might take a

somewhat different approach to constructing the preconditioner R: we could

apply orthogonal rotations to A as if we were accomplishing a QR factorization,

but again preserve only selected non-zeros. As with incomplete Cholesky, we

can accomplish such an incomplete QR factorization (IQR) by using drop

tolerances, specified non-zero patterns, or other more elaborate strategies (see,

for example, Jennings and Ajiz [21], or Zlatev and Nielsen (401).

Regardless of the drop strategy, there is a question of existence to address.

Certainly a complete orthogonal factorization in exact arithmetic will produce a

non-singular upper triangular matrix I. But once we begin dropping non-zeros,

we may in fact introduce linear dependence in the columns of the reduced ma-

trix, preventing us from generating a non-singular preconditioner f. Jennings

and Ajiz [21] describe a sophisticated strategy based on drop tolerances, and

prove that it produces a non-singular preconditioner. They produce a similar

result for a strategy based or Gram-Schmidt orthogonalization (see also Saad

[33]). We examine here a strategy which uses Givens rotations and a drop

strategy based on the position of non-zeros.

Begin by agreeing to confine non-zeros in the upper triangular matrix A to

those positions in which ATA has non-zeros. We determine the non-zero pattern

of ATA by symbolic matrix multiplication. More precisely, columns i and j of

the matrix A are said to be symbolically interactive (or simply interactive)

if there exists a k such that both aw and akj are non-zero. In this case, the

product ATA is said to have a symbolic non-zero in position (ij). If no such

k exists, we call the columns symbolically non-interactive (or simply non-

117



interactive), and we note that ATA has a (symbolic) zero in position (ij). This

approach to defining the non-zero pattern of ATA (and A) amounts to assuming

that no cancellation occurs in forming the product. Of course, since A is upper

triangular (and ATA is symmetric positive definite), we need only consider the

case i < j when performing the symbolic multiplication. The diagonal elements

of the product are always symbolically non-zero (in fact they are numerically

positive), because the columns of A interact with themselves.

Now apply the following reduction to A:

Incomplete QR Factorization

1. Use symbolic matrix multiplication to determine the non-zero data struc-

ture of the upper triangular portion of ATA. Use this information to fix

a static data structure for the approximate Cholesky factor R.

2. For targetrov = 1,...,n:

(a) For pivotrov = 1,..., (targetrov-1):

9 If necessary, rotate pivotrov against targetrov, annihilating the

leading non-zero in position k = pivotrov of targetrov.

a Accumulate all fill in targetrow; i.e. drop no non-zeros produced

in targetrow by the Givens rotation.

* Retain non-zeros in pivotrov only if they occur in positions corre-

sponding to symbolic non-zeros in the upper triangular portion

of ATA.

(b) Now that targetrov has been completely reduced, retain only those

non-zeros which occur in positions corresponding to symbolic non-

118



zeros in the upper triangular portion of ATA. Store the selected non-

zeros of this fully reduced row in the static data structure reserved

fo r A.

Thus we allow complete fill in a target row while reducing that row, but

restrict fill in the pivot rows to positions corresponding to symbolic non-zeros

of ATA.

. In addressing whether this algorithm successfully produces a non-singular

upper triangular k, one might first ask the same question about incomplete

Cholesky factorizations. It has long been known that incomplete Cholesky

may break down when the drop strategy is based on the non-zero pattern of

ATA; Kershaw [22J provides a simple example. If ATA is either diagonally

dominant or an M.matrix, however, this form of incomplete Cholesky always

produces a nou-singulr preconditioner (in fact, a slightly more general result

holds; see Manteuffel (23]). One might be led to expect similar results for IQRl

We demonstrate in the next section that this is not the case. the IQR algorithm

described above can in fact break down, even if ATA is diagonally dominant or

an M-matrix.

9.3 Examples of Incomplete QR Breakdown

In this section we demonstrate by example that the IQR algorithm described

above can in fact break down, even under fairly rew4rictive conditions.

Begin with the following 4x4 matrix A:

' 1 0 0

0 0 95)A= 1 0 1 1 (95
[060 21

119



The matrix has full column rank, so ATA is symmetric positive definite. (A is

square merely to keep the example small; one could easily construct rectangular

matrices to achieve the efcts described below.)
We now apply the IQR. factorization described in the previous section. Form-

ing the symbolic product ATA gives us the non-zero pattern for A:

* **** 1]
•[0 * "(9.6)

Note that there are symbolic non-zeros in every position except (2,3).

We now detail the reduction. The non-zeros in row 1 of A conform to the

required non-zero pattern, so we retain row 1 as is. Row 2 has a zero in column

1, so no reduction is necessary. Again, its non-zeros conform to the required

pattern, so we retain all the non-zeros. Now let row 3 be the target row. Begin

by using row 1 as the pivot row to annihilate the (3,1) element. Applying the

appropriate Given, rotation produces

pivot -- 1.4142 0.7071 0.7071 0.7071 1
0 1.0000 0 1.0000

target 0 -0.7071 0.7071 0.7071 (97)
0 6.0000 0 2.0000J

Our strategy calls for preserving all elements in the target row until the

reductilon of that row is complete, so at this point we discard no elements in

row 3. The noa-zerw in the pivot row conform to the required pattern, so

we preserve all elements there as well. Thus, up until now, our 'incomplete"

factoriation coincides with a classical QR factorization. We are not finished

reducing row 3, however. Now use row 2 as the pivot row to annihilate the (3, 2)

120



element. The complete Givens rotation (no discarded elements) looks like this:r 1.4142 0.7071 0.7071 0.7071
pivot -- 0 1.2247 -0.4082 0.4082 9

target -- 0 0 0.5774 1.1547 (9.8)

0 6.0000 0 2.0000

Recall, however, that there is a symbolic zero in position (2,3), so we must

discard the (2,3) element in the pivot row (in practice, we do not even generate

it). We also note that the reduction of target row 3 is now complete, so we

check to see if we must discard any non-zeros. The non-zeros in row 3 conform

to the required non-zero pattern, so we preserve all the non-zeros in this row.

Thus, when the reduction of target row 3 is complete, the matrix R looks like

thb&
1.4142 0.7071 0.7071 0.7071

0 1,2247 0 0.4082
target -- 0 0 0.5774 1.1547 (9.9)

0 6.0000 0 2.0000

Discading the (2,3) entry has created a dependency which will become

apparent on the next rotation. Row 4 now becomes the target row; using pivot

row 2 to annihilate the leading non-zro produces the singular matrix below:

1.4142 0.7071 0.7071 0.7071
pivot 0 6.1237 0 2.0412 I

0 0 0.5774 1.1547" (9.10)
target -. 0 0 0 0

The algorithm hba failed to produce a non-singular upper triangular it.

It's helpful to examine how we constructed the example. The 3x3 principal

submatrix in the upper left corner of (9.10) is non-singular, so its columns span

23. In particular, the vector coasisting of the first three entries of the last

column of (9.10) can be written as a unique linear combination of the columns

121



of this submatrix. Thus

1.4142 [0.7071] 0.7071 0.7071
o• 0 + z6.1237 + 0 = 2.0412 (9.11)

0 0 0.5774 1.1547

for some unique choice of a,, a2, and as. Now choose the elements in the

fourth row of the original matrix A so that the entries in the row satisfy the

same relationship:

ala4i + a2a42 + a 3043 = a44- (9.12)

This ensures the matrix lacks full column rank after the element in position (2,3)

is discarded. If we choose the entries in this row so that (9.12) is satisfied and

the original matrix has full column rank, we succeed in producing an example

of breakdown.

Note that this construction is not overly dependent on the fact that we are

using the non-zero pattern of ATA; given another strategy based on a specified

non-zero pattern, we may be able to construct'an example of breakdown in a

similar manner. We need only begin to reduce a simple example, note the stage

at which the first element is discarded, and adjust the values of the elements

below the current target row to create a column dependency. (We should also

observe in passing that a dropped element can have the opposite effect, chang•ig

a dependent set of vectors into an independent set.)

We note several other interesting facts about the algorithm and the break-

down mechanim:

1. Row pennutations may or may not prevent breakdown. If we pennute rows

2 and 4 inv the matrix A above, the incomplete factorization terminates

normally. But there is nothing special about this permutation: rows 2

122



and 4 have the same non.zero pattern, and we could just as easily have

chosen numerical values to cause breakdown for this permutation.

2. There is at least one situation wohich guarantees a succemWfu factorization.

Suppose we are given a matrix A with many more rows than columns,

and we partially reduce the matrix until reaching the form

A2  (9.13)

where RI is upper triangular and non-singular. Then subsequent incom-

plete factorization cannot create dependent columns (in fact, continued

reduction cannot reduce the singular values of RI). This is because a

Givens rotation which uses a leading non-zero r in a pivot row of R, to

annihilate a leading non-zero a in a target row of A2 will always leave

the larger non-zero value vr'PT on the diagonal of the pivot row. This

fadt could prove useful in problems inlving updating. if we start with a

Wat*X A and ar app-o~mi ate h, then introduce new observations (rows),

we can update R using IQR without fear of breakdown.

3. We can p~we much stronger conditions on the matrix A and 30l experi-

ence breakdom. Co•s•der, for example, the matrix
S9 -3 0 01

A40 9 0 -12 (9-14)A= 3 0 9 3 (.4

.0 -T 0 9.

In this case, AIA is strictly diagonally dominant, but breakdown occuis

exactly as it did in the example above. Similarly, the matix
r -5 5 0 101

A= o s o -20
25 0 -53

0 -3 0 5

123



leads to a breakdown, despite the fact that ATA is an M-matrix.

Finally, we report that breakdowns such as these do in fact occur in practical

problems. We have tested the IQR factorization described in this section on

the four sparse rectangular matrices WELLI033, WELL1850, ILLC1033, and

ILLC1850 from the Harwell-Boeiug test collection (see Duff, Grimes, and Lewis

(9]), and observed breakdowns on WELL1850 and ILLC1850. We were able to

prevent breakdown by reordering the rows of the matrices in stairstep fashion

according to the positions of the leading non-zeros. Unfortunately, though,

simply producing a non-singular A is not enough. For each of the four matrices

we tested, the quality of the IQR preconditioner was marginal at best. we have

not yet produced results which are fast enough to be competitive with any of

the etablished iterative methods.

124


